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Cascaded H-bridge Asymmetric Multilevel Inverter

Kehu Yang, Member, IEEE, Xinfu Lan, Qi Zhang, and Xin Tang

Abstract—The unequal dc-link voltages in the cascaded H-
bridge (CHB) asymmetric multilevel inverters lead to asymmetry
of the equations for selective harmonic elimination (SHE), which
increases the difficulty in solving the switching angles. On the
other hand, the unequal dc-link voltages provide a large amount
of synthesized waveforms which can be used to optimize the
performance of inverters. However, as most of the traditional
SHE approaches are derived according to a given output
waveform, it cannot handle multiple synthesized waveforms. In
this paper, the unified SHE equations are derived for all the
possible synthesized waveforms under a specific switching angles
distribution among the cells. By using the polynomial homotopy
continuation algorithm, all the possible solutions of the unified
SHE equations can be found without the selection of initial values.
As the waveforms generated by H-bridge are limited to three-
level, some of the solutions are not physically realizable and
should be discarded, hence, criterion is proposed to distinguish
these specious solutions. The case of CHB converter with 2 cells
and 6 switching angles are studied, in total, there exist 86 groups
of candidate solutions, and 14 of them are physically realizable.
Experiments are also shown to validate the correctness of this
unified SHE approach for CHB asymmetric multilevel inverters.

Index Terms—Selective harmonic elimination, Multilevel in-
verter, Cascaded H-bridge, Unequal dc-link voltages, Polynomial
homotopy continuation

I. INTRODUCTION

SELECTIVE harmonic elimination (SHE), which has a
series of merits, such as low switching losses, low total

harmonic distortion (THD), has become one of the popular
modulation strategies for multilevel inverters [1]-[9] and has
been widely studied during the past several decades [10].
However, most of the existing researches assumed that the
dc levels are equal. In the distribution generation system,
there are usually several kinds of sources, such as photovoltaic
panel, fuel cell, wind turbine, etc., and their output voltages
depend heavily on the environment, load or some other factors,
which make the dc levels unequal or even time-varying. In
some literatures, the multilevel inverters with unequal dc
levels are also named asymmetric multilevel inverters (AMLIs)
[11],[12]. Although the unequal dc levels lead to asymmetry
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of the SHE equations, which brings some problems in solving
the switching angles. It also provides far more synthesized
waveforms than the symmetric muitilevel inverters (SMLIs),
which can derive many different SHE equations and probably
more valid solutions could be solved and better performance
could be achieved. However, first of all, we must explore some
new methods which can investigate all the possible synthesized
waveforms and identify the optimal one.

Traditionally, the SHE equations are derived according to
a given synthesized waveform, and an inequality constraint
designates the sequencing of the switching angles, although
this way has been widely used in almost all the existing
literatures [13]-[18], it still has some defects that can be
further improved. For the SMLIs, the amount of synthesized
waveforms is equal to the switching patterns (the combination
of the transition states on each switching angles), as each
switching angle has two possible transition states, the total
amount of synthesized waveforms is 2N , where N is the
number of the switching angles. However, for the AMLIs, as
the dc levels are unequal, even for the same switching pattern,
the synthesized waveforms can be different, so, the overall
synthesized waveforms are far more than that of SMLIs. In
order to find the optimal switching angles, all the possible
synthesized waveforms and all the possible solutions must be
evaluated, obviously, these can not be handled by the tradi-
tional SHE approaches. Moreover, the inequality constraint
limits the algorithms only find solutions within the solution
subspace which corresponding to a specific switching pattern,
so, the solutions do not satisfy the constraint are considered
as “wrong” solutions, but actually, these “wrong” solutions
are probably the right solutions for other switching patterns.
Recently, a unified SHE approach is proposed [19], in which
the various SHE equations for different switching patterns
are merged into one group of unified SHE equations and
the inequality constraints on the switching angles are also
eliminated, however, this approach is limited to the SMLIs.
In [20], although this idea is extended to the CHB AMLIs, it
is only suitable for fundamental frequency modulation.

On the other hand, the unequal dc levels increase the
difficulty in solving the SHE equations. For the numerical
iterative methods, the empirical formulas used to compute
initial values for the SMLIs are probably unsuitable for the
AMLIs. For the intelligent algorithms [21], such as the genetic
algorithm (GA) [22], the particle swarm optimization (PSO)
[23],[24], the bee algorithm [25], the differential evolution
(DE) [26], etc., although the initial values are not necessary,
their solving procedures are greatly stochastic and cannot be
guaranteed to find correct solutions within a limited time.
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For the algebraic methods, such as the resultant elimination
method [27],[28] and the Groebner bases method [29], as
their huge computation burden, the symmetric polynomials
[30],[31] are usually used to reduce the degrees of the poly-
nomials and then cut down the computation burden. However,
as the unequal dc levels in AMLIs, the SHE equations are
no longer symmetrical, so, the symmetric polynomials cannot
be applied and the computation burden remains extremely
high which greatly limits the application of algebraic methods.
In recent years, some totally different approaches for SHE
have been proposed, such as the four-equation-based method
[32],[33], and the artificial neural networks (ANNs) based
method [34],[35], as these methods avoid solving the SHE
equations, they can be implemented real time, however, these
indirect methods are not robust as the direct methods and their
accuracy are not guaranteed.

In general, the existing SHE technologies for CHB AM-
LIs still have some problems need to be improved, in both
the mathematical model and the solving algorithm. In this
paper, the switching angles are distributed among the CHB
converter’s cells, and then the unified SHE equations for a
given distribution ratio are proposed, which can deal with
multiple synthesized waveforms and is suitable for both the
fundamental frequency and the high frequency modulation.
Also, a polynomial homotopy continuation[37] based method
is proposed to solve the unified SHE equations, with its ability
to find all the possible solutions, all the possible synthesized
waveforms can be evaluated at the same time and the optimal
solution can be further identified.

II. SYNTHESIZED WAVEFORMS FOR CHB AMLIS

A. Switching patterns of the H-bridgs in CHB inverters

Fig.1 is the main circuit of a CHB multilevel inverter with
3 cells whose dc sources E1, E2 and E3 are unequal.

Fig. 1. The main circuit of a CHB multilevel inverter with 3 H-bridges

In the CHB inverter, each cell is a full H-bridge converter
which can output three voltage levels E, 0, and −E. If there
are 3 switching angles in a quarter period, then, the H-bridge
has 4 different switching patterns which are shown in Fig.2.
For a three-level converter, (a) and (b) are the commonly
used switching patterns which are actually identical as they
are just out of phase, however, in the CHB inverters, (a)
and (b) may lead to different switching patterns. Also, for
switching patterns (c) and (d), although they are rarely used
in traditional three-level converters, they will introduce new
switching patterns in CHB inverters.

Fig. 2. Switching patterns for 3 switching angles

Generally, if there are n switching angles in a quarter period
and the initial voltage level is assumed to 0, the first switching
angle has two possible transition states, i.e., the voltage level
can both rise to E and fall to −E. Then, no matter how the
first switching angle goes, the second switching angle has only
one transition state that it must be return to level 0. After that,
the third switching angle has two transition states again. It
can be seen that all the odd number switching angles have
two possible transition states whereas all the even number
switching angles have only one transition state, so, the total
number of the switching patterns of the H-bridges can be
computed by the following formula:

w(n) =

{
2n/2 for n is even
2(n+1)/2 for n is odd

(1)

Under the traditional SHE framework, different switching
patterns result in different SHE equations, hence, for H-bridge
with n switching angles, there are w possible SHE equations,
which are difficult to be fully studied. However, if the unified
ideal proposed in [19] is adopted, all the possible equations
can be merged into one unified SHE equations, which can
dramatically simplify the solving procedure and provide the
opportunity to derive the unified SHE equations for CHB
inverters.

B. Distribution ratio and the synthesized waveforms

The output of a CHB inverter is the superposition of the
waveforms produced by all its cells. If there are N switching
angles, which are assigned to M cells according to a certain
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distribution ratio γ(n1, n2, . . . , nM ), the number of the possi-
ble switching patterns is

W (N,M) =
M∏
i=1

w(ni) (2)

where n1 +n2 + · · ·+nM = N , and w(ni) can be computed
by (1). In CHB AMLIs, although the order of the switching
angles in each cell is fixed for a given switching pattern,
the order between the cells has many possibilities which can
lead to different synthesized waveforms. For example, if each
cell in the CHB AMLIs shown in Fig.1 has 3 switching
angles, i.e., the distribution ratio is γ(3, 3, 3), Fig.3 shows 3
possible synthesized waveforms which are caused by changing
the order of switching angles among the cells. Generally,
for a given switching pattern, the number of the synthesized
waveforms can be computed by the following formula:

Z(N,M) =
P (N,N)∏M
i=1 P (ni, ni)

(3)

where P (, ) is the permutation operation. Hence, the total
number of the synthesized waveforms for a given distribution
ratio γ(n1, n2, . . . , nM ) is the multiplication of W (N,M) and
Z(N,M). For distribution ratio γ(3, 3, 3), the total number of
synthesized waveforms is

S[γ(3, 3, 3)] =
w(3)w(3)w(3)P (9, 9)

P (3, 3)P (3, 3)P (3, 3)
= 107520 (4)

In the traditional SHE approaches, the SHE equations are
derived according to the synthesized waveform which actually
indicates the order of all the switching angles, in other words,
the switching pattern is fixed. However, even for a simple
case that 9 switching angles with distribution ratio γ(3, 3, 3),
there are 107520 different synthesized waveforms, which will
result in 107520 different SHE equations. Among these SHE
equations, we don’t know which one has solutions or whose
solutions have better performance than others. The only way
to find the optimal solution is to solve all the 107520 SHE
equations, obviously, it is cannot be handled by the traditional
SHE approaches.

For the SMLIs, the synthesized waveforms are much less
than that of the AMLIs, for example, the number of synthe-
sized waveforms for CHB SMLIs with 9 switching angles
is only 29 = 512. The reason for this is that the switching
angles in CHB SMLIs are exchangeable among the cells, i.e.,
the switching angles assigned to a certain cell can also be
assigned to other cells, which cannot result in extra synthesized
waveforms. However, once the dc levels are unequal, the
switching angles are attached to the cells and cannot be
exchanged, otherwise, new synthesized waveforms will be
produced as the changes on voltage levels lead to different
PWM waveforms.

III. UNIFIED SHE EQUATIONS FOR CHB AMLIS

So far, almost all of the existing SHE models for multilevel
converters have an inequality constraint on all the switching
angles, such as:

0 < α1 < α2 < · · · < αN−1 < αN < π
2

Fig. 3. Synthesized waveforms caused by changing the order of switching
angles between the cells

Also, only the solutions which strictly satisfy this constraint
are considered as the physically realizable solutions [26].
However, for the CHB multilevel converters, each cell can
be controlled independently, hence, only the switching angles
which belong to the same cell should have a fixed order. So,
it is more reasonable to modify the constraint to the following
constraints:

0 < α11 < α12 < · · · < α1n1−1 < α1n1
< π

2
0 < α21 < α22 < · · · < α2n2−1 < α2n2

< π
2

...
0 < αM1 < αM2 < · · · < αMnM−1 < αMnM

< π
2

where αi1, αi2, . . . , αini−1, αini are the switching angles be-
long to the ith cell. For CHB SMLIs, these two constraints
actually are identical as the switching angles are exchangeable
among the cells, however, for CHB AMLIs, the latter con-
straints are more consistent with the actual behaviors of the
CHB inverters and can represent various switching patterns,
which extend the search space and increase the possibility to
find valid solutions.
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Now, inside each cell, the switching angles still have a
constraint and are limited to [0, π2 ], is it indispensable? No, this
constraint actually can be completely removed. For traditional
two-level and three-level converters, the rising edge and the
falling edge of the output PWM waveform must be strictly
interleaved, they never allow two successive rising edges
or falling edges, hence, this constraint is reasonable and
necessary. However, as discussed in section II-A, the H-bridges
in a CHB inverter have many switching patterns, according to
the unified ideal proposed in [19], these switching patterns can
be formulated by one group of unified SHE equations. Hence,
the unified SHE equations for CHB AMLIs can be derived as
follows:{ ∑M

i=1

∑ni

j=1Ei cos(αij) = m ·
∑M
i=1Ei∑M

i=1

∑ni

j=1Ei cos(kαij) = 0 k = 3, 5, 7 · · ·
(5)

where Ei and αij are the voltage of dc source and the jth
switching angle in ith cell, respectively, m is the modulation
index which is defined as follows:

m =
π

4
· V∑M

i=1Ei
(6)

The first equation sets the amplitude of fundamental to a
desired value V and the other equations ensure the elimination
of some selected harmonics. Unlike the commonly used SHE
equations, the prefixed signs of the cosine functions are all plus
and the constraint on the switching angles are completely re-
moved in (5), which significantly simplify both the expressions
and the solving procedure, and provide a powerful approach
to study all the possible switching patterns under a unified
framework. One thing should be pointed out is that this unified
SHE equations are for a given distribution ratio, for different
distribution ratios, different SHE equations should be used.

Generally, the unified SHE equations for multilevel con-
verters assume each switching angle has two possible tran-
sition states, i.e., rising or falling. However, as discussed in
section II-A, for the H-bridges in the CHB inverters, only
the odd number switching angles have two possible transition
states whereas all the even number switching angles have
only one transition state, hence, among the solutions for
(5), there probably exist some solutions that have more than
two successive rising edges or falling edges, which are not
physically realizable and must be discarded. Let’s use sij to
represent the transition state on the jth switching angle in ith
cell, and if the transition state is rising, sij = 1, otherwise,
sij = −1, then, the combination of transition states belong to
ith cell is {si1, si2, . . . , sini

}. For example, the combinations
of transition states for the waveforms shown in Fig.1 are {1,-
1,1}, {-1,1,-1}, {1,-1,-1} and {-1,1,1}, respectively. Once the
combination of transition states is obtained, the level number
on each switching angle can be computed by the following
formula:

Lij =

j∑
t=1

sit (7)

Then, the waveform is physically realizable if and only if
|Lij | ≤ 1 hold for any j ∈ {1, 2, . . . , ni}. If the cells in
the cascaded multilevel converter are neutral point clamped

(NPC) bridges which can generate five-level waveforms, |Lij |
should be no larger than 2 which means that more waveforms
are physically realizable.

IV. SOLVING THE UNIFIED SHE EQUATIONS WITH
POLYNOMIAL HOMOTOPY CONTINUATION ALGORITHM

As its nonlinear transcendental nature, the SHE equations
are difficult to be solved. The commonly used numerical
methods and intelligent methods usually require initial values
and can only find partial solutions. Although the algebraic
methods can find all the solutions without the selection of
initial values, the computation burden is extremely huge when
the dc levels are unequal as the polynomials are no longer
symmetric and cannot be simplified. Compared with the cases
of equal levels, the unequal levels result in many more switch-
ing patterns which would probably introduce more solutions
and provide more choices for SHE in CHB AMLIs. In [36],
the polynomial homotopy continuation (PHC) algorithm [37]
is firstly introduced to solve the multilevel SHE equations
with unequal dc levels and show its capability to find all the
solutions without the selection of initial values, however, the
solved SHE equations are still under the traditional framework
and related to a fixed switching pattern. In this paper, in
order to find all the possible switching patterns and the
corresponding switching angles, the PHC algorithm is also
employed to solve the unified SHE equations.

A. Polynomial Homotopy Continuation Algorithm

The homotopy continuation algorithm is a kind of numerical
iterative methods used to solve the nonlinear equation systems,
unlike the traditional numerical iterative methods, such as
the Newton-Raphson method, this algorithm does not solve
the original nonlinear system directly, whereas it constructs
a start system whose solutions are easily to find and then
approximates the original solutions by using the continuation
or path-following methods.

Usually, the homotopy continuation algorithm operates in
two main stages. Firstly, the following homotopy mapping
equation is constructed:

H(x, λ) = c(1− λ)G(x) + λF (x) = 0 (8)

where G(x) = H(x, 0) is the start system and F (x) =
H(x, 1) is the target system which needs to be solved. c is a
random complex number and λ is the homotopy parameter.
In the second stage, as λ moves from 0 to 1, numerical
continuation methods trace the paths that originate at the
solutions of the start system towards the solutions of the
target system. It can be seen that the homotopy continuation
algorithm avoids the selection of initial values which is usually
a tough work for the traditional numerical iterative methods.
Moreover, it has global convergence property and can find all
the numerical solutions in the field of complex numbers.

Obviously, the constructed start system G(x) is critical
to the homotopy continuation algorithm, it must satisfy the
following three properties:

(1) Triviality. The solutions of start system G(x) are trivial
to find.
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(2) Smoothness. No singularities along the solution paths
occur, as the continuation parameter λ varies from 0 to 1, we
get smooth paths that lead from solutions of G(x) to solutions
of F (x).

(3) Accessibility. All isolated solutions can be reached.
In order to find all the solutions of the target system F (x),

the solution count of the start system must be not less than the
target system. However, the evaluation of solution count for
a general nonlinear system is very difficult, but if the target
system is pure polynomial system, its solution count can be
determined by the polynomial theory, this is the basic idea of
the PHC algorithm, which makes it different from the general
homotopy continuation algorithms. Considering the following
polynomial system:

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fn(x1, x2, . . . , xn) = 0

(9)

Let F = [f1, f2, . . . , fn] and x = [x1, x2, . . . , xn]. Denote D
is the total degree of the target system F (x) which is defined
as follows:

D =
n∏
k=1

deg(fk) (10)

where deg(fk) is the degree of fk, k ∈ [1, 2, . . . , n]. According
to the famous Bézout’s theorem, if F (x) has finite solutions
in the complex field, then the count of the isolated solutions
is no more than D including the multiple solutions. However,
the Bézout’s theorem just give an upper bound of the count of
the solutions, for many polynomial system, the actual solution
count is usually less than D. If a start system is constructed
with more solutions than the target system actually have, the
extra solution paths may converge to infinite points or multiple
solutions which waste a large amount of computing time
and memory consumption. Hence, if the upper bound of the
solution count for the target system can be exactly evaluated,
the computation burden will be reduced dramatically. In [37],
some reduction methods are proposed to reduce the target
system and give a smaller D. If the reduced degrees of F (x)
are (d1, d2, . . . , dn), the start system can be constructed by
the following way:

G(x) = [g1(x), g2(x), . . . , gn(x)] (11)

where gk(x) = xdkk − ck, k = 1, 2, . . . , n., ck is a complex
number. The PHCpack [38] is a user-friendly software package
which contains all the key operations in PHC algorithm,
includes the construction of the start system and the homo-
topy mapping equation, the numerical continuation or path
following algorithms, provides us a powerful toolbox to solve
the unified SHE equations.

B. Solving the Unified SHE Equations with PHCpack

Let’s give an example to illustrate how to solve the unified
SHE equations by using PHCpack. The studied case is a CHB
converter with 2 cells whose normalized dc voltages are 1 p.u.
and 0.6 p.u. respectively, the number of switching angles is 6

and the distribution ratio is γ(4, 2), then, according to (5), the
unified SHE equations for modulation index m = 0.8 are as
follows:



∑4
j=1 cos(α1j) + 0.6

∑2
j=1 cos(α2j) = 0.8∑4

j=1 cos(5α1j) + 0.6
∑2
j=1 cos(5α2j) = 0∑4

j=1 cos(7α1j) + 0.6
∑2
j=1 cos(7α2j) = 0∑4

j=1 cos(11α1j) + 0.6
∑2
j=1 cos(11α2j) = 0∑4

j=1 cos(13α1j) + 0.6
∑2
j=1 cos(13α2j) = 0∑4

j=1 cos(17α1j) + 0.6
∑2
j=1 cos(17α2j) = 0

(12)

As the PHC algorithm can only deal with polynomial
systems, (12) must be converted into the following polynomial
equations by using the multiple-angle formulas and substitut-
ing cos(αij) with xij .

x11 + x12 + x13 + x14 + 0.6(x21 + x22) = 0.8∑4
j=1(16x

5
1j − 20x31j + 5x1j)+

0.6
∑2
j=1(16x

5
2j − 20x32j + 5x2j) = 0∑4

j=1(64x
7
1j − 112x51j + 56x31j − 7x1j)+

0.6
∑2
j=1(64x

7
2j − 112x52j + 56x32j − 7x2j) = 0∑4

j=1(1024x
11
1j − · · · − 11x1j)+

0.6
∑2
j=1((1024x

11
2j − · · · − 11x2j)) = 0∑4

j=1(4096x
13
1j − · · ·+ 13x1j)+

0.6
∑2
j=1(4096x

13
2j − · · ·+ 13x2j) = 0∑4

j=1(65536x
17
1j − · · ·+ 17x1j)+

0.6
∑2
j=1(65536x

17
2j − · · ·+ 17x2j) = 0

(13)

Then, (13) are solved by the PHCpack and the multiple
solutions are merged into one solution, finally, 86 groups of
solutions are obtained in which there inevitably exist some
solutions that are not physically realizable by the H-bridges.
Table I lists some selected solutions for (13).

TABLE I
SOME SELECTED SOLUTIONS

x11 x12 x13 x14 x21 x21
−0.748 0.481 −0.016 0.767 0.954 −0.426
−0.989 0.623 0.257 0.468 0.768 −0.031
0.918 0.620 0.405 −0.067 −0.800 −0.993

According to the method proposed in [19], the switching
angles and the corresponding switching patterns can be recov-
ered by the following way: if xij > 0, αij = cos−1(xij) and
the transition state is rising, otherwise, αij = π − cos−1(xij)
and the transition state is falling. Then, the switching angles
belong to the same cell along with their transition states are
rearranged in ascending order according to their values, and
the final results are shown in Table II.

TABLE II
SWITCHING ANGLES FOR THE SOLUTIONS IN TABLE I (UNIT: DEGREE)

α11 α12 α13 α14 α21 α22

39.92 ↑ 41.55 ↓ 61.28 ↑ 89.08 ↓ 17.43 ↑ 64.80 ↓
8.47 ↓ 51.50 ↑ 62.13 ↑ 75.13 ↑ 39.84 ↑ 88.25 ↓
23.36 ↑ 51.72 ↑ 66.12 ↑ 86.17 ↓ 6.97 ↓ 36.84 ↓
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The final step is to check whether the waveforms are phys-
ically realizable or not. The level numbers on each switching
angles are computed according to (7) and listed as follows:

TABLE III
LEVEL NUMBERS ON EACH SWITCHING ANGLES IN TABLE I

L11 L12 L13 L14 L21 L22

1 0 1 0 1 0
-1 0 1 2 1 0
1 2 3 2 -1 -2

It can be seen that except for the first group of switching
angles, the level numbers on some switching angles of the
other two groups of switching angles are larger than 1,
which are marked in red and indicate that the corresponding
waveforms are not physically realizable by single H-bridge.
However, if the first cell of the CHB converter is a NPC
bridge which can generate five-level waveforms, the second
group of switching angles are also physically realizable. For
the third group of switching angles, the waveforms for the two
cells are seven-level and five-level, respectively, which require
more complicated converters to realize them.

By using this method, all the 86 groups of switching angles
are checked, and there are 14 groups of switching angles
can be realized by H-bridges, which are listed in Table IV.
One thing should be pointed out is that these 14 groups
of solutions are just for one distribution ratio, for this case
of 6 switching angles, the possible distribution ratios can
be γ(1, 5), γ(2, 4), γ(3, 3), γ(4, 2) and γ(5, 1), so, the overall
physically realizable solutions are probably far more than 14.
In contrast, the maximum solution number for SMLIs with
6 switching angles is just 10. It can be seen that the valid
solutions for AMLIs are far more than SMLIs, which provides
more choice for harmonic elimination.

TABLE IV
PHYSICALLY REALIZABLE SWITCHING ANGLES (UNIT: DEGREE)

α11 α12 α13 α14 α21 α22

1 2.74 ↑ 8.86 ↓ 17.38 ↑ 85.65 ↓ 65.97 ↓ 75.03 ↑
2 19.79 ↑ 39.78 ↓ 61.64 ↑ 86.25 ↓ 39.11 ↑ 65.62 ↓
3 39.92 ↑ 41.55 ↓ 61.28 ↑ 89.08 ↓ 17.43 ↑ 64.80 ↓
4 14.87 ↑ 50.83 ↓ 54.43 ↑ 78.02 ↓ 23.53 ↑ 40.07 ↓
5 7.57 ↑ 46.39 ↓ 49.71 ↑ 56.77 ↓ 22.34 ↑ 75.02 ↓
6 61.96 ↑ 68.07 ↓ 74.51 ↑ 89.09 ↓ 20.18 ↑ 79.33 ↓
7 21.17 ↑ 65.01 ↓ 68.32 ↑ 77.29 ↓ 7.08 ↑ 40.70 ↓
8 22.48 ↑ 49.71 ↓ 53.79 ↑ 80.06 ↓ 14.09 ↑ 37.27 ↓
9 1.42 ↑ 58.44 ↓ 79.78 ↑ 86.26 ↓ 39.82 ↑ 65.46 ↓
10 19.80 ↑ 41.67 ↓ 61.64 ↑ 86.26 ↓ 42.28 ↑ 65.62 ↓
11 18.35 ↑ 48.02 ↓ 53.31 ↑ 75.55 ↓ 72.25 ↑ 88.94 ↓
12 15.12 ↑ 44.94 ↓ 62.10 ↑ 68.44 ↓ 39.89 ↑ 88.25 ↓
13 9.86 ↑ 63.14 ↓ 65.61 ↑ 73.86 ↓ 22.27 ↑ 45.10 ↓
14 2.26 ↑ 57.86 ↓ 68.54 ↓ 75.15 ↑ 39.83 ↑ 88.25 ↓

Compared with the commonly used numerical and intelli-
gent methods, the biggest benefit of this PHC-based algorithm
is its capability to find all the solutions for all possible
synthesized waveforms without the selection of any initial
values, which is very useful in optimizing the performance
of multilevel inverters. The only limitation of this method
in practical projects is the computing efficiency, the PHC
algorithm follows a huge amount of solution paths, which costs

most of the computing time, however, as the solution paths
are independent of each other, the paths following operations
can be easily distributed on different computing nodes, which
provides a potential way to improve the efficiency of the PHC
algorithm. In recent years, the Graphic Processing Unit (GPU)
based parallel computing has become the most popular and
powerful tools in high performance computing and has been
widely used in many applications. If the PHC algorithm is
parallelized on the most powerful GPUs, such as the Tesla
P100 from nVidia [39] which has 3584 computing cores
inside, its executing efficiency would gets hundreds of times
speedup and finally realize the real time computation of the
switching angles.

V. EXPERIMENTAL RESULTS

A single-phase multilevel inverter consists of two cascaded
H-bridges as shown in Fig.4 has been built to validate the
correctness of switching angles solved by this method, in
which the IPM module STGIPS30C60 is used as the switch-
ing device and the dc link voltages are set to 100V and
60V, respectively. An ARM Cortex-m4-based microcontroller
STM32F407 is used to generate the PWM gating signal and
control the multilevel converter, and the load is a 20 Ohm
resistor.

Fig. 4. Experimental set up.

In the experiments, the 4th, 8th, 12th groups of switching
angles listed in Table IV are selected to control the CHB
inverter. Experimental results including waveforms of the
phase voltages and their Fast Fourier Transform (FFT) analysis
are shown in Figs.5-7. It can be seen that the aimed 5th, 7th,
11th, 13th and 17th harmonics are eliminated very well, which
verifies the correctness of this proposed method.

As shown in Table IV, for one modulation index, there are
many groups of solutions, although all of them can precisely
eliminate the aimed harmonics, the distributions of the un-
eliminated low-order harmonics are different. So, for different
applications, we should carefully evaluate the solutions and
select the suitable switching angles to control the inverter.
Usually, the Total Harmonic Distortion (THD) defined as (14)
is used to evaluate the property of the switching angles.

THD =

√
V 2
5 + V 2

7 + · · ·+ V 2
49

V 2
1

× 100% (14)
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However, in some applications, such as common mode
voltage mitigation in motor drives and the zero-sequence
circulating currents reduction in the paralleling inverter, the
zero-sequence harmonics should be limited as low as possible.
Here, the Zero-Sequence Harmonic Factor (ZHF) defined as
(15) is used to evaluate the quantity of the lowest two zero
sequence harmonics, i.e., the 3rd and 9th harmonics.

ZHF =

√
V 2
3 + V 2

9

V 2
1

× 100% (15)

In addition, the Harmonic Distortion Factor (HDF) which is
related to the first two un-eliminated harmonics is another
commonly used factor to evaluate the switching angles and
it can be calculated by using the following formula:

HDF =

√
V 2
19 + V 2

23

V 2
1

× 100% (16)

The experimental and theoretical THD, ZHF and HDF
for the 4th, 8th and 12th groups of switching angles are
computed and shown in Table V, which shows very good
consistency and verifies the correctness of switching angles. It
can be seen that the 12th group of switching angles have the
lowest zero-sequence harmonics, which are more suitable for
common mode voltage mitigation in motor drives. However,
their THD and HDF are significant higher than the other two
groups of switching angles. From this example, it can be
seen that as each group of switching angles have their own
harmonic distribution, they should be completely evaluated
and carefully selected for different applications to achieve the
best performance. Obviously, the unified SHE model and the
PHC-based solving method proposed in this paper provide a
feasible way to do this.

(a) The waveform of the phase voltage.

(b) The FFT analysis for the phase voltage in (a).

Fig. 5. Waveform and its FFT for the 4th solution.

(a) The waveform of the phase voltage.

(b) The FFT analysis for the phase voltage in (a).

Fig. 6. Waveform and its FFT for the 8th solution.

(a) The waveform of the phase voltage.

(b) The FFT analysis for the phase voltage in (a).

Fig. 7. Waveform and its FFT for the 12th solution.

TABLE V
THE EXPERIMENTAL AND THEORETICAL THD, ZHF AND HDF

Experimental Value (%) Theoretical Value (%)
THD ZHF HDF THD ZHF HDF

4th 22.73 85.33 5.96 22.88 85.15 6.05
8th 21.95 77.22 12.70 22.28 77.27 12.82

12th 27.72 52.53 18.93 26.72 50.65 18.42
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VI. CONCLUSION

In this paper, the synthesized waveforms for CHB AMLIs
are firstly studied, as the non-commutativity of the switching
angles between the H-bridges, the synthesized waveforms
produced by AMLIs are much more than SMLIs. Then, a
unified selective harmonic elimination approach is proposed,
which can simultaneously deal with all the possible synthe-
sized waveforms for a given distribution ratio of switching
angles, and the rules used to remove the unrealizable solutions
are given. Based on the polynomial homotopy continuation
algorithm, a solving instance is given to illustrate how to
solve the unified SHE equations. The main advantages of this
method are that it has no requirement on initial values and can
find all the possible solutions. Experimental results verify the
correctness of this unified SHE approach for the CHB AMLIs.
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