The Impact of Interference from the Side Lanes on mm Wave/THz Band V2V **Communication Systems with Directional** Antennas

ABSTRACT

- In this paper, using a combination of measurement, simulation, and analytical methods we comprehensively characterize the interference from the side lanes in two typical deployments.
- Both the multipath interference and direct interference from the transmitting vehicles on the side lanes is taken into account.
- As a result of our study, we reveal that the interference from the side lanes can be well approximated using two-dimensional stochastic models without any significant loss of accuracy.

EXISTING SYSTEM

- Communications systems operating in the millimeterwave and terahertz band have been recently suggested to enable high data-rate vehicle-to-vehicle communications in 5G and beyond wireless networks.
- However, massive deployment of such systems may lead to significant interference, affecting the performance of information transmission.
- While the multipath interference caused by the signal reflections from the road has been extensively discussed in literature.

PROPOSED SYSTEM

- In addition, the interference level in the analyzed configurations greatly depends on the angle of the antenna radiation pattern.
- On the contrary, for angles smaller than 20° the interference in dense deployments of vehicles is typically marginal even in the absence of the interference mitigation techniques.

HARDWARE REQUIREMENTS Intel core i3 Processor RAM 2B• 20 GF Hard Disk

SOFTWARE REQUIREMENTS

: LINUX

• Operating System

- Tool
- Front End

- : Network Simulator-2
- : OTCL (Object Oriented Tool Command Language)

REFERENCE

- [1] METIS, "Updated scenarios, requirements and KPIs for 5G mobile and wireless system with recommendations for future investigations," Deliverable D1.5, April 2015.
- [2] S. Andreev, V. Petrov, M. Dohler, and H. Yanikomeroglu, "Future of ultra-dense networks beyond 5g: Harnessing heterogeneous moving cells," 2017.
- [3] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil, "Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions,", 2011.

[4] E. Lee, E. K. Lee, M. Gerla, and S. Y. Oh, "Vehicular cloud networking architecture and design principles,", February 2014.