Offloading for Multi Access Edge

ABSTRACT

- Toward this end, we introduce hybrid fiber wireless networks to provide supports for the coexistence of centralized cloud and multi-access edge computing, and present an architecture by adopting the FiWi access networks.
- An approximation collaborative computation offloading scheme, and a game-theoretic collaborative computation offloading scheme.
- Numerical results corroborate that our solutions can not only achieve better offloading performance than the available MECO schemes but also scale well with the increasing number of computation tasks.

EXISTING SYSTEM

- The problem of cloud-MEC collaborative computation offloading is presented.
- Hosted Networks mostly adopt the networking technology integrating cellular and backbone networks, which have the short comings of single access mode, high congestion, high latency and high energy consumption.
- However, existing mobile-edge computation offloading research only took the resource allocation between the MDs and the MEC servers into consideration.

PROPOSED SYSTEM

- In this paper, we studied the problem of collaborative computation offloading with centralized cloud and multi access edge computing.
- We first presented an architecture for collaborative computation offloading over FiWi networks.
- To defined the problem of cloud-MEC collaborative computation offload.
- ACCO and GT-CCO were proposed step by step as our solutions.

HARDWARE REQUIREMENTS Intel core i3 Processor RAM 2B• 20 GF Hard Disk

SOFTWARE REQUIREMENTS

: LINUX

• Operating System

- Tool
- Front End

- : Network Simulator-2
- : OTCL (Object Oriented Tool Command Language)

REFERENCE

- [1] B. P. Rimal, D. P. Van, and M. Maier, "Mobile Edge Computing Empowered Fiber-Wireless Access Networks in the 5G Era,", Feb. 2017.
- [2] R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang, "Toward Cloud-based Vehicular Networks with Efficient Resource Management,", Sept. 2013.
- [3] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman, "Cloud-Vision: Real-Time Face Recognition Using a Mobile-Cloudlet-Cloud Acceleration Architecture," in ISCC, 2012.
- [4] C. C. Coskun, K. Davaslioglu, and E. Ayanoglu, "Three-Stage Resource Allocation Algorithm for Energy-Efficient Heterogeneous Networks,", Aug. 2017.