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ABSTRACT

* Deep learning based methods for ret %
segmentation are usually trained ba Qe wise
losses, which treat all Vess 1s®Wwith equal

hlng between a

importance 1n pixel-to-p X
predicted probablhty é d the corresponding
manually annotat tation.
* However, d$ hlghly imbalanced pixel ratio
betwe d thin vessels in fundus 1mages, a
@ oss would limit deep learning models to
@ features for accurate segmentation of thin
sels, which 1s an important task for clinical

diagnosis of eye-related diseases.




EXISTING SYSTEM

* Among various features 1n fundus %@%ﬁnal
an

vessel features play a crucial role «
example,

tal symptom, generally

 Taking diabetic retino
microaneurysm, one f
exists along retingmves

e For the ¢

of retinal vessel features,
cCurate segmentation of retinal blood

generai
\Y 1Sx@ssential.
ﬁimi ¢

er, manual annotation by a human observer 1s
-consuming



PROPOSED SYSTEM

* In this paper, we propose a new s ley®l loss
which emphasizes more on the ' '&é onsistency

of thin vessels 1n the trainin&

* By jointly adopting segment-level and the
pixel-wise lossesghe ortance between thick and

thin vessels ss calculation would be more
balanced.

sul® more effective features can be learned for
segmentation without increasing the overall
del complexity.
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