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Abstract—GPUs have been becoming an indispensable computing platform in data centers, and co-locating multiple applications on
the same GPU is widely used to improve resource utilization. However, performance interference due to uncontrolled resource
contention severely degrades the performance of co-locating applications and fails to deliver satisfactory user experience. In this paper,
we present SMGuard, a software approach to flexibly manage the GPU resources usage of multiple applications under co-location. We
also propose a capacity based GPU resource model CapSM, which provisions the GPU resources in a fine-grained granularity among
co-locating applications. When co-locating latency-sensitive applications with batch applications, SMGuard can prevent batch
applications from occupying resources without constraint using quota based mechanism, and guarantee the resources usage of
latency-sensitive applications with reservation based mechanism. In addition, SMGuard supports dynamic resource adjustment
through evicting the running thread blocks of batch applications to release the occupied resources and remapping the uncompleted
thread blocks to the remaining resources, which avoids the relaunch of the preempted kernel. The SMGuard is a pure software solution
that does not rely on special GPU architecture or programming model, which is easy to adopt on commodity GPUs in datacenters. Our
evaluation shows that SMGuard improves the average performance of latency-sensitive applications by 9.8× when co-located with
batch applications. In the meanwhile, the GPU utilization can be improved by 35% on average.

Index Terms—GPU, parallel computing, resource management, application co-location
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1 INTRODUCTION

S INCE the beginning of this century, GPUs have been
becoming an important and powerful processing device

for general-purpose computing, especially for massively
parallel application. To accelerate key businesses, GPUs
are widely adopted in large-scale datacenters. To improve
resource utilization, GPU is usually shared by co-locating
multiple types of application, such as latency-sensitive ap-
plications (LS applications) and batch applications. How-
ever, to satisfy the stringent Quality-of-Service (QoS) of
LS applications, the GPUs are often over-provisioned and
under-utilized for most of the time [1]. There exists a natural
contradiction among GPU sharing and guaranteeing the
QoS target of LS applications.

The root cause of the performance degradation is the
contention of co-locating applications on shared resources,
which can seriously violate the QoS of LS applications [1],
[2], [3], [4]. To mitigate the performance interference under
co-location, an effective and flexible resource management
method needs to be proposed to guarantee the QoS of LS
application while improving GPU resource utilization. In
the past decade, a large body of research [1], [3], [4], [5], [6],
[7], [8], [9], [10] has been devoted to solve the co-location
problem. In the industry, Multi-Process Server (MPS) [6],
proposed by Nvidia, is the current de facto industrial stan-
dard to allow GPU kernels from different applications to
be processed concurrently on the same GPU, and MPS has
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been widely adopted by Nvidia Kelper, Maxwell, Pascal and
current cutting-edge Volta architecture [11]. However, MPS
lacks efficient control over the GPU resources. If an appli-
cation is capable of using up all resources, then there will
be no resource available to the subsequent application and
it will wait until the former application releases resources
[5], [12]. The waiting time varies depending on the kernel
length and the number of queued thread blocks, especially,
when the subsequent application is a LS application and
the kernel length of the former application is long or the
number of queued thread blocks is large, then the QoS of
the LS application can be seriously violated.

To avoid the arbitrary occupation of GPU resource in
co-location, resource used by batch applications should be
limited in order to reserve enough resources to LS applica-
tions. Thus, when a task from LS application comes, it can be
served immediately. However, existing GPU architectures
do not support resources partition. Previous works [13], [14],
[15] proposed hardware extensions to enable GPU partition
in a simulated manner, which cannot be applied in the real
GPUs immediately. Existing software solutions rely on the
state-of-the-art Filling & Retreating mechanism [16], [17],
[18]. When a kernel needs to use the GPU, no matter how
small the kernel is, it should first launch enough thread
blocks to fill the whole GPU and then the streaming multi-
processors (SMs) can be retreated through retrieving SM
IDs online. In the Filling stage, resource used by a task is
not restricted. In addition, Filling & Retreating mechanism
heavily relies on retrieving SM IDs online. Although SM
ID can be easily obtained in CUDA on Nvidia GPUs, it is
impossible for OpenCL or any other GPU programming
model to get that because of the lack of corresponding
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Fig. 1. GPU sharing modes. Assumed that kernel K1 is launched at t0 and kernel K2 is launched at t1, and they share a GPU. Fig.(a) is exclusive
using mode, and K2 needs to wait for the completion of K1. Fig.(b) is context switching mode, and the round robin algorithm is used by the GPU
scheduler to switch the co-locating kernels. Fig.(c) is preemptive mode, when K2 is launched, it preempts the execution of K1. Fig.(d) is spatial
sharing mode, K1 and K2 are executed simultaneously as long as there are enough resources.

interface.
In this paper, we propose a flexible and fine-grained re-

source management framework SMGuard, a runtime system
different from Filling & Retreating mechanism, to address
above problems. SMGuard limits the resource used by a
task flexibly using a capacity based GPU resource model
CapSM, which does not rely on special hardware to retrieve
SM IDs online. To guarantee the performance of LS appli-
cations, SMGuard reserves sufficient GPU resource for LS
applications by limiting the available GPU resource to co-
located batch applications, which eliminates the delay of LS
applications (especially during the load burst) significantly.
Different from the multi-stage of Filling & Retreating mech-
anism, with SMGuard, the resource used by an application
is restricted directly before it starts running on GPU. In
addition, when the reserved resource need to be increased,
SMGuard supports runtime resource adjustment using sim-
ilar resource eviction mechanism as EffiSha [17] and FLEP
[18]. However, different from EffiSha and FLEP, the relaunch
of the preempted tasks is eliminated in SMGuard by remap-
ping the evicted thread blocks to remaining resource and
continuing the execution of these thread blocks.

Specifically, this paper makes the following contribu-
tions:

1) A flexible GPU resource model based on capacity
slice CapSM - We abstract the physical SM into small
capacity slices, where capacity slices from different SMs
that equal to a physical SM in total can form a CapSM.
SMGuard benefits from CapSM that no special hardware or
programming model is required to retrieve SM IDs online
and CapSM can be easily applied to other programming
models.

2) Fine-grained resource reservation mechanism using
quota - Based on CapSM, we design resource quota and
reservation mechanism that effectively limit the resource
used by batch applications and reserve enough resource for
LS applications.

3) Runtime system for dynamic resource adjustment
- We propose a runtime mechanism that dynamically re-
duces resource occupied by a task and remaps uncompleted
thread blocks onto remaining resource without the need of
relaunching the preempted task.

We implement SMGuard framework using all above
techniques and evaluate it with co-locations from various
GPU applications. The experiment results show that SM-
Guard can improve the average performance of LS tasks by
9.8× when co-located with batch tasks. And the GPU uti-

lization can also be improved by 35% on average. With the
benefits of online task remapping, the average normalized
latency of preempted tasks is reduced by 60% on average.

The rest of this paper is organized as follows: Section
2 presents the background and motivation of this paper.
Section 3 presents the overview of SMGuard. Section 4
proposes the fine-grained SM model. The detailed resource
management mechanism is described in Section 5. Section
6 provides performance and efficiency evaluation of SM-
Guard. Section 7 presents the analysis of the related work,
while Section 8 is devoted to the conclusions.

2 BACKGROUND AND MOTIVATION

In this section, we first briefly introduce the background of
GPU computing model, and then provide the motivation of
this paper. Although we target on CUDA in this paper, other
GPU computing models are also applied to the contents of
this paper.

2.1 GPU Parallel Computing Model
A modern GPU mainly consists of cores (known as CUDA
core in NVIDIA), global memory, shared memory, register
files, load/store units, warp schedulers and some other
components. Among these components, there usually be
thousands of cores, and every hundreds of cores are orga-
nized into a SM. SM is designed to support hundreds of
threads to execute parallelly, so there could be thousands
of threads in parallel execution in a GPU with multiple
SMs, which makes the GPU especially suitable for massively
parallel computing.

In GPU, code executed on device is called kernel. When
a kernel is launched, thousands of threads are created by
GPU. GPU uses a Single Instruction Multiple Thread (SIMT)
architecture to manage and execute these threads, and every
32 of these threads are grouped into a unit, namely warp,
which is the basic unit of warp scheduler; further, multiple
warps are grouped into thread blocks; last, all the thread
blocks are grouped into one grid, and the size of a grid is
determined by launch configuration. After launched, each
thread block will be dispatched into a SM by GPU hardware
scheduler if there remained enough resources (eg. shared
memory and register files) in that SM and all dispatched
thread blocks become active thread blocks; however, if none
of all the SMs have enough resources, all thread blocks
not dispatched will be blocked until sufficient resources are
released, which means that all subsequent kernel tasks will



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2848621, IEEE
Transactions on Parallel and Distributed Systems

3

0 1024 2048 3072 4096 5120 6144
Input size of matrixMul

0.0

0.5

1.0

1.5

2.0

S
M

 n
e
e
d
e
d

1e4

0
1
2
3
4
5
6
7
8
9

E
x
e
cu

ti
o
n
 t

im
e
 (

m
s)

1e2

SM needed
Execution time

Fig. 2. The kernel execution time with the required number of SMs under
different input sizes for matrix multiplication.

be blocked if former launched kernel can fully utilize all
available resources.

2.2 GPU Sharing Mode
GPU sharing mode determines how and when a task will
be performed. Fig. 1 shows four modes for GPU sharing.
The first is exclusive mode; multiple tasks will use the GPU
in a FIFO order, when one task is using the GPU, other
tasks will be blocked until the running task releases the
GPU. Under context switching mode, tasks from multiple
applications can use the GPU concurrently through context
switching and each task is assigned a serially scheduled
time-slice on the whole GPU, thus the block time of tasks
can be reduced greatly. However, in every switching, a large
amount of context data should be stored/restored and the
overhead of this process is not negligible, which leading to
the underutilization of the GPU.

Some software solutions [19], [20], [21] are also proposed
to support preemptive mode, where, higher priority tasks
can preempt the running of lower priority tasks on GPU.
Through the priority based preemption, the response time
of high priority tasks can be guaranteed while the context
switching times can also be reduced.

Through the above analysis, we can find that only one
task can use the GPU at every moment even though a task
cannot fully utilize the whole GPU. To make full use of
the GPU resources, the spatial sharing mode was proposed.
The MPS, for instance, can make multiple tasks use the
GPU simultaneously if there are sufficient resources. Spatial
sharing mode can increase GPU utilization and improve
system performance compared to other three GPU sharing
modes. The work of this paper is based on MPS.

2.3 Demands of GPU Resource Reservation
When a GPU kernel task is launched, many thread blocks
are created. And the GPU hardware scheduler dispatches
all thread blocks to SMs. If the number of thread blocks
from the kernel task is less than the number of SMs on the
GPU, each SM will execute at most one thread block [21].
On the other hand, each SM may execute multiple thread
blocks. If the GPU is not fully utilized by the currently
running task, the hardware scheduler will dispatch thread
blocks from other tasks to SMs. Otherwise, all other tasks
are blocked until all thread blocks of currently running task
are dispatched, which leads to long waiting time for other
tasks, especially in the multi-tenant data centers. The long
waiting time causes severe performance degradation to LS
tasks when co-located with batch tasks. In addition, the
number of thread blocks launched by a kernel task varies
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Fig. 3. Preemption based Scheduling. We assume the GPU has 3 SMs
and only one active thread block can be hosted in each SM. The batch
kernel(K1) represented by yellow bars has 9 thread blocks, thus, each
SMs will assign 3 thread blocks. The LS kernel (K2) represented by
green bars has 3 thread block. To run K2, K1 needs to be preempted.
ts, te and td respectively represent the launching time, the end time
and the deadline of K2; tr represents the relaunch point of K1; gray
bars represent the free and launching time. Fig. (a) shows the scenario
that K2 is co-located with a small kernel K1 and the QoS of K2 can be
satisfied. Fig. (b) demonstrates that K2 is co-located with a large kernel
K1 and the QoS is violated because of the long waiting time for the
completion of batch task.

by input data size. Therefore, it is challenging to provide
an effective resource management mechanism on GPU that
can explicitly restrict the resource usage of batch task and
reserve enough resource for LS task to satisfy the QoS target.

Fig. 2 shows the required number of SMs of matrix
multiplication (matrixMul) with different input data sizes.
In Fig. 2, the x-axis indicates the different input data sizes,
and the y-axis shows the maximum number of SMs that
matrixMul may occupy if having unlimited number of SMs
on GPU. The maximum number of SMs is the ratio between
the number of launched thread blocks and the maximum
number of active thread blocks an SM can host. The number
of launched thread blocks can be retrieved using nvprof
[22] and the maximum number of active thread blocks can
be obtained by the cudaOccupancyMaxActiveBlocksPerMulti-
processor API provided by CUDA runtime. As shown in
Fig. 2, matrixMul is able to utilize thousands of SMs if
there are unlimited SM resource. However, in realistic GPU
devices, the number of SMs is usually quite limited. When
running on Nvidia GTX 970 with 13 SMs, the execution
time of matrixMul with different input data sizes is shown
in Fig. 2 in green line. The curve of the execution time is
similar to the curve of required number of SMs. Because the
maximum number of active thread blocks of a kernel task
is determined on a certain GPU, the other thread blocks of
the task should be queued until the currently active thread
blocks are completed. The larger the number of launched
thread blocks the longer the total execution time.

The state-of-the-art software based preemption mecha-
nism proposed in FLEP and EffiSha reduces the delay of
long running kernel task by preempting the low-priority
task if a high-priority task is ready to run. The granularity
of preemption in the software based mechanism is block-
task. A block-task is the set of work done by a thread
block. However, the overhead of the block-task level pre-
emption heavily depends on the length of block-task, which
is illustrated in Fig. 3. In the software based mechanism,
the preemption point is at the end of the block-task loop,



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2848621, IEEE
Transactions on Parallel and Distributed Systems

4

CapSM based Resource 
Manager

SMGuard API
CPU GPU

SMGuard Runtime

...

Batch task pool

...

LS task pool

Batch 
applications

(Transformed)

LS 
applications

(Transformed)

Workload

Code 
Transformation

LS.cu

Batch.cuBatch.cu

Proxy

Batch kernel

LS kernel

Proxy

Resource Reservation

Dynamic Resource 
Adjustment

Fig. 4. Overview of SMGuard.

and only the block-task in each iteration is completed, the
preemption point can be granted. Therefore, the preemption
overhead can be as long as the length of the block-task
in the worst case. In addition, the preempted block-tasks
can only be executed by relaunching the whole kernel
task. Thus, the pure preemption mechanism is not suitable
when LS tasks are co-located with batch tasks that could
block LS tasks for a long time even if the preemption is
enabled. To strictly guarantee the QoS of LS tasks when co-
located with batch tasks, in addition to the state-of-the-art
preemption mechanism, it is also necessary to provide the
capability of resource reservation that satisfies the resource
requirement of LS tasks. In the meanwhile, to improve the
GPU resource utilization while guaranteeing the QoS, the
resource allocation should be adjusted dynamically during
runtime between LS and batch applications.

3 OVERVIEW OF SMGUARD

The goal of SMGuard is to provide a flexible and fine-
grained resource management that can thoroughly restrict
the available resources to the co-located batch kernels and
reserve sufficient resources for LS kernels to ensure that QoS
is met.

Fig. 4 shows the overview of SMGuard. Due to the
inaccessibility to the underlying GPU driver and CUDA
runtime, it is difficult to add new features to the existing
GPU, runtime or driver. Similar to existing work [17], [18],
[20], we use source to source transformation compiler to au-
tomatically add supports of SMGuard to GPU applications.
The kernel invocation API on the CPU side is transformed to
intercept the invocation, and kernel launching configuration
is also transformed to launch special number of thread
blocks. Optionally, SMGuard also provides a set of APIs to
programmers to control the kernel tasks to be issued. The
APIs allow the programmers to push kernel tasks to one of
the two task pools according their task type.

When a kernel task arrives, the Resource Reservation
module in the CapSM based Resource Manager determines the
GPU resource quota of that task according to its resource
request and the current GPU usage. To achieve the resource
quota and reservation mechanism flexibly, we propose a
capacity based SM model CapSM. In addition, to reduce

SMs

CapSMs

SM slices

Fig. 5. Capacity based SM abstraction and CapSM model.

the resource quota of co-located batch tasks during runtime,
the Dynamic Resource Adjustment module preempts batch
tasks to release resources, which in turn increases available
resources to LS task accordingly. For those block-tasks that
are preempted by Dynamic Resource Adjustment module, the
block-task remapping Proxy inserted into the kernel during
source transformation remaps them to remaining resources,
eliminating the unnecessary relaunch of preempted kernel
task.

4 A FINE-GRAINED SM RESOURCE MODEL

In this section, we present the abstract SM model CapSM,
which is the basis of SMGuard. Then we illustrate how to
use CapSM to restrict the resource usage of kernel task.
To demonstrate, we describe how to implement CapSM on
CUDA kernel.

4.1 CapSM: a Capacity Based SM Model
According to the analyses of previous sections, it is nec-
essary to manage the GPU resource usage in co-location
scenarios of large scale cloud datacenters and strictly restrict
the resources can be used for co-located batch tasks to min-
imize the shared resource competition, which can eliminate
performance interference and guarantee the QoS target of
the LS tasks. However, due to the restrictions of business
secrets, we cannot have a detailed understanding of the task
scheduling and execution in GPU, thus it is very hard to
limit the GPU resources used by GPU kernels accurately and
directly. The goal of CapSM is to explore a way to provide
a flexible and fine-grained resource quota and reservation
mechanism.

In SMGuard, we introduce the capacity concept to SM.
The capacity of a SM in SMGuard is the abstraction of
the SM resource. We abstract the physical SM into small
capacity slices, and capacity slices from different SMs or
the same SM that equal to a physical SM in total capacity
make up a CapSM. Above process can be illustrated in
Fig. 5. In other words, if the maximum number of active
thread blocks of a kernel task that a SM can host is M ,
we consider the total resource capacity occupied by these
M thread blocks is equivalent to the capacity of a SM, and
each thread block can be seen to use 1/M capacity of a
SM or utilize 1/M SM, and the capacity slice size can be
set to 1/M . Further, we can say every M thread blocks
whether dispatched to the same SM or different SMs will
utilize one SM in capacity. For simplicity, we call capacity
slices, whose total capacity is equal to a physical SM, from
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the same SM or different SMs a CapSM, and the amount
of CapSM is equal to the total number of SMs in a GPU.
Because the maximum number of active thread blocks of a
kernel task is determined in a SM, the number of total active
thread blocks at every moment indicates the number of used
CapSMs, which shows the used SMs in the view of capacity.
In SMGuard, the restriction on the use of SM is transformed
to the restriction on the use of capacity based CapSM. In
this paper, we say SM resource reservation also means the
reservation of SM capacity.

Given a resource constraint N , if the number of launched
thread blocks does not exceed the maximum number of
active thread blocks of N SMs, the constraint can be sat-
isfied automatically. However, in real system, the number
of launched thread blocks of a kernel usually exceeds the
maximum number of active thread blocks of that kernel
hosted by the whole GPU, then the kernel will use more
than the constrained resources. Thus, there should be a
mechanism to ensure the resources used by any number
of thread blocks can be limited to a certain number of
CapSMs. We utilize the similar persistent threads [23] tech-
nique to transform any number of original thread blocks
to a certain number of persistent thread blocks (also called
workers), thus the resource constraint can be easily satisfied
by launching a certain number of workers rather than any
number of original block-tasks. To enable preemption on
GPU, previous work need to launch the maximum number
of workers the GPU can simultaneously host even if the
number of block-tasks is far less than the maximum number.
Different from previous work, SMGuard is more flexible and
it can launch the maximum number of workers any number
of SMs, not the whole GPU, can simultaneously host by
using CapSM model. The main idea of how SMGuard can
do that is presented in section 4.2.

4.2 Restricting Resource Usage With CapSM
Through the previous analyses, we can see that the more
launched thread blocks of a kernel, the more resources it
will use. SMGuard can achieve resource quota by launching
limited thread blocks using CapSM model. A use case can be

__global__ void gpu_kernel(arg1,arg2,...)
{
  Kernel_Function_Body(blockIdx);
}

__global__ void p_gpu_kernel(arg1,arg2,...)
{
   while(1){ 
     taskIdx=getNextTaskIdxFromQueue();
     if(taskIdx==null) return;
     Kernel_Function_Body(taskIdx);  
   }
}

0 1 2 3SM 0:

4 5 6 7SM 1:

0 1 2 3SM 0:

SM 1: 4 5 6 7

(a)normal thread (b)persistent thread

normal 

thread block

persistent  

thread block

（worker）
block-task

Fig. 7. The relationship between normal thread and persistent thread.
Suppose a kernel task K has 8 thread blocks and each SM can only
host one active thread block. There are total 2 SMs in a GPU. Fig. (a): in
default model, each SM is dispatched 4 thread blocks and each of the 4
thread blocks is executed in turn; Fig. (b):in persistent model, each SM
is dispatched 1 persistent thread block and each persistent thread block
executes 4 assigned block-tasks in turn.

shown in Fig. 6. In Fig. 6, we assume that the GPU has three
SMs and the CUDA grid of the kernel has 6 thread blocks,
and we also suppose that the maximum number of active
thread blocks of the kernel hosted in a SM is 2. If we use
the default MPS mechanism, all the 6 thread blocks will be
dispatched to the GPU, and the kernel task will fully utilize
the GPU, which will block subsequent kernels. The above
problems can be solved using SMGuard. Firstly, the original
kernel function should be transformed as illustrated in Fig. 7
through the source to source compilation. Supposing the
resource constraint is 1 and the maximum number of active
thread blocks of the transformed kernel hosted in a CapSM
or SM is also 2. Then the grid size of the transformed kernel
is 2, which means only 2 workers will be launched and
the 2 workers will fill one CapSM. The original 6 block-
tasks will be assigned to these 2 workers, so each worker
will execute 3 block-tasks. After workers launched, they will
execute assigned block-tasks in a loop. Until the kernel task
is completed, only 2 workers have processed all the 6 block-
tasks and only 1 CapSM is used. Although these 2 workers
may be dispatched to 2 different SMs, the most important
thing is that used resources of the task can be restricted.

4.3 Adopting CapSM to GPU Kernel
SMGuard uses persistent threads technique to limit the
number of launched thread blocks and restrict resources
used by a kernel task. Fig. 7 illustrates the relationship
between normal thread and persistent thread. To transform
the origman CUDA kernel to support persistent thread, we
apply static code modification to insert customized APIs au-
tomatically using source to source compilation. In order to
use SMGuard to manage GPU resource, we also implement
coordination mechanism between CPU and GPU.

The CPU is primarily responsible for the interference
of normal kernel invocation. In SMGuard, every kernel
invocation is redirected to SMGuard runtime, then the SM-
Guard runtime determines when to submit, what is the
resource quota or reservation. And the CPU determines
the number of launched workers based on resource quota.
In addition, the CPU also notifies GPU kernel to reduce
currently utilized GPU resources (CapSMs) when online
resource adjustment is performed.
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TABLE 1
Parameters used in SMGuard

Symbol Meaning

BlockTaskNumberi The block-task number, also the grid
size of original kernel task

PBWorkerNumberi The grid size of transformed kernel
MaxActivePBlocki The maximum number of active thread

blocks of transformed kernel hosted be
a SM

CapSMQuotai Resource quota of the task
CapSMReseri Resource reservation of the task
BlockTasksPerPBlocki The number of block-tasks assigned to

a worker

The GPU is mainly to launch specified number of work-
ers, which is transformed to persistent mode from the orig-
inal kernel. All block-tasks are executed within an inserted
loop as illustrated in Fig. 7. In SMGuard, each worker
belongs to a CapSM, and block-tasks are assigned based
on the ID of CapSM. Therefore code segments need to be
inserted to kernels to assist workers to know which CapSM
it belongs to and which block-tasks it needs to process.
In this paper, we call all inserted segments in GPU side
as Proxy, which serves as the proxy of CPU side CapSM
based Resource Manager. The Proxy component mainly holds
3 roles. First, Proxy performs the initialization operations
and assigns block-tasks for each worker (see Section 5.1).
Second, the GPU side Proxy needs to coordinate with CPU
to dynamically adjust used resources. There is a detection
point at the end of each block-task to check if the CPU sends
a resource adjustment signal. If current CapSM is included
in the evicted range, then all workers in current CapSM will
exit. Furthermore, Proxy is also responsible for remapping
uncompleted block-tasks from evicted workers to remaining
workers, which avoids the relaunch of evicted kernel task.
More details about the Proxy are explained in Section 5.2.

5 CAPSM BASED RESOURCE MANAGEMENT

The SMGuard resource management mainly consists of of-
fline resource reservation and dynamic resource adjustment.
In co-location, the resources assigned to batch tasks should
be limited to reserve adequate resources for LS tasks; mean-
while, if the reserved resources are not enough to meet the
performance requirement, resources utilized by batch tasks
should be evicted online.

5.1 Resource Reservation on GPU

In SMGuard, we use the CapSM model as resource man-
agement unit. Resource quota can prevent co-located batch
tasks from running out all the available resources and re-
tain enough resources for LS tasks. Thus, when a LS task
launched into the GPU, it can immediately obtain needed
resources and begin to run. To better describe the mecha-
nism, we define some parameters in Table 1. If a kernel task
i needs to use the GPU, it should be submitted to SMGuard
runtime using SMGuard API. SMGuard runtime provides
two ways to submit a task:

1) a quota based method, which ensures the amount
of resources used by a task does not exceed its quota;

Algorithm 1: Resource Decision
Input: Methodtype , Rrequest , BlockTaskNumber ,

MaxActivePBlock , Rremain

Output: PBWorkerNumber , BlockTasksPerPBlock
1 if Rrequest <= Rremain then

/* With sufficient resources, resource request can be met.
*/

2 PBWorkerNumber ← Rrequest ∗
MaxActivePBlock ;

3 else
4 if Methodtype == RESERV then

/* If the remaining resources do not meet the demand
of a task submitted using reservation based
method, the online resource adjustment operation
should be done to prepare enough resources. */

5 Rgap ← Rrequest −Rremain;
6 do onlineResourceAdjust(Rgap);
7 PBWorkerNumber ← Rrequest ∗

MaxActivePBlock ;
8 else

/* The resource request of a task submitted using
quota based method must not exceed the
remaining resources. */

9 Rquota ← Rremain;
10 PBWorkerNumber ← Rquota ∗

MaxActivePBlock ;
11 end
12 end
13 BlockTasksPerPBlock ← BlockTaskNumber

PBWorkerNumber ;

batch tasks can be submitted using this method to restrict
available resources;

2) a reservation based method, which guarantees the
resources needed by a task; LS tasks can be submitted using
this method to meet their minimum resource requirements.

When the quota based method is used, resource quota
CapSMQuotai should be provided; when the reservation
based method is used, resource reservation CapSMReseri
should be provided.

When a task is submitted to its task pool, the resource
reservation module in SMGuard will do operations illus-
trated in Algorithm 1 to determine the actual resources
can be used by that task. As shown in Algorithm 1,
Methodtype is the method a task is submitted, and Rrequest

is CapSMQuotai for a task submitted using method 1)
and CapSMReseri for method 2). Rremain is the amount
of current remaining resources. If Rremain is no less than
Rrequest , Rrequest can be met no matter the task is submitted
using method 1) or method 2). Otherwise, if the task is
submitted using method 1), its Rrequest should not exceed
Rremain and it can use all the remaining resources; if the
task is submitted using method 2), Rgap will be calculated
to get the resource difference, then the onlineResourceAdjust
module will be called to evict resources specified by Rgap

from tasks currently running on GPU in order to satisfy
Rrequest .

After the above operations are completed,
PBWorkerNumber and BlockTasksPerPBlock can be got.
Then the task can be issued to GPU, which is configured
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Algorithm 2: GPU Kernel Proxy
Input: kernel arg list , BlockTasksPerPBlock ,

MaxActivePBlock , CapSMQuota
/* some initialization */

1 WorkerIdxInCapSM ← getWorkerIndxInCapSM ();
2 PBlockId ← blockDim.x ∗ blockIdx.y + blockIdx.x;
3 CapSMId ←

⌈
PBlockId

MaxActivePBlock

⌉
;

4 do
5 StartTaskId ←

PBlockId ∗ BlockTasksPerPBlock ;
6 EndTaskId ←

StartTaskId + BlockTasksPerPBlock ;
/* if it is processing block-tasks from remapped CapSM,

then get the first uncompleted block-task in
corresponding worker */

7 StartTaskId ← getFirstUncompleted(PBlockId);
/* process each block-task in current block-task

queue:from StartTaskId to BlockTasksPerPBlock */
8 for CurTaskId← [ StartTaskId, EndTaskId ) do
9 if CapSMId < evictCapSMFlag then

10 same status and return;
11 end
12 do original kernel body ; /* replace the original

thread block ID with CapSMId */
13 end

/* online task remapping */
14 if task remap is not checked then
15 if evictCapSMFlag ∈ (0,CapSMId ] then
16 NumberPerCapSM ←⌈

evictCapSMFlag
CapSMQuota−evictCapSMFlag

⌉
;

17 StartCapSMId ←
(CapSMId − evictCapSMFlag) ∗
NumberPerCapSM ;

18 EndCapSMId ←
StartCapSMId +NumberPerCapSM ;

19 CurCapSMId ← StartCapSMId ;
20 else
21 return;
22 end
23 else
24 CurCapSMId ← CurCapSMId + 1 ;
25 end
26 PBlockId ← CurCapSMId ∗MaxActivePBlock+

WorkerIdxInCapSM ;
27 while CurCapSMId ∈ [ StartCapSMId,EndCapSMId );

to create PBWorkerNumber thread blocks (workers)
regardless of its input data size or BlockTaskNumber and
each worker will assign BlockTasksPerPBlock block-tasks.

After PBWorkerNumber workers are created and the
task starts running on GPU, each worker will first do some
initializations to calculate its global block ID (also called
global worker ID), the ID of CapSM it belongs to and the
range of block-tasks it will process.

The global block ID PBlockId can be got easily using the
private macros of each thread provided by CUDA:

PBlockId = blockDim.x ∗ blockIdx.y + blockIdx.x (1)

PB0 PB1 PB2 PB3

Eviction 

point

Online block-task remapping

Evict one CapSM

CapSM0 CapSM1

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B1

B2

B4

B5

Fig. 8. Overview of online task remapping proxy on the GPU side.

Then, PBlockId divided by MaxActivePBlock is CapSM ID:

CapSMId =

⌈
PBlockId

MaxActivePBlock

⌉
(2)

In SMGuard, every MaxActivePBlock consecutive workers
are logically mapped into the same CapSM, although they
may be dispatched across several different SMs. Next, the
block-task range is calculated for the worker to execute. The
start block-task ID StartTaskId is:

StartTaskId = PBlockId ∗ BlockTasksPerPBlock (3)

and the end block-task ID EndTaskId is:

EndTaskId = StartTaskId + BlockTasksPerPBlock (4)

The above initializations can be illustrated in line 1-6 of
Algorithm 2. After initializations, each worker will execute
every block-task in the block-task range from StartTaskId
to EndTaskId in a loop, which can be illustrated in line 8-13
of Algorithm 2.

5.2 Dynamic Resource Adjustment
From previous section, we can see that if the resource re-
quest Rrequest of a task that submitted using the reservation
based method cannot be satisfied by the current remaining
GPU resources Rremain , the onlineResourceAdjust module
will be called to evict certain resources from tasks currently
running on GPU in order to satisfy Rrequest . This section
describes the mechanism of dynamic resource adjustment.

To send resource eviction signal to running tasks on
GPU, we create a volatile variable evictCapSMFlag , which
means the number of CapSMs should be evicted, for each
task in the Unified Memory in CUDA, which can make
evictCapSMFlag visible on both CPU and GPU.

If the resources of a task should be evicted, SMGuard
will assign Rgap or some other values to evictCapSMFlag
of that task. To receive the eviction signal in a running task,
each worker will check the variable evictCapSMFlag at the
end of a block-task. As shown in line 9-11 of Algorithm 2, if
evictCapSMFlag is set, all workers that CapSM IDs are less
than evictCapSMFlag should exit. In this way, all workers
belong to certain CapSMs will exit and the corresponding
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//CPU code:
  .. .
#inc lude ”SMGuard.h”
int main(int argc, char *argv[]){
  .. .
    /* initialization and resource decision */
hook=SMGuard_Kernel_Init((void*)vectorAdd,  \\
                      blocksPerGrid , threadsPerBlock);
    /* wait kernel to be launched */
    _SMGuard_Pre_Kernel_Launch  //macro
    vectorAdd<<<_SMGuard_gridSize(hook),         \\
                                         threadsPerBlock>>>          \\
                          (d_A, d_B, d_C, numElements,        \\
                         _SMGuard_runParams(hook));    
    _SMGuard_Post_Kernel_Launch //macro
    /* kernel comple ted */ 
  .. .
}
// GPU kernel:
__global__ void
vectorAdd(const float *A, const floa t *B, floa t *C, 
         int numElements,_SMGuard_declareParams)
{
    /* some worker initializations */
    _SMGuard_Kernel_Begin //macro
    /* replace blockIdx in kernel body with taskIdx */
    int i = blockDim.x * taskIdx.x + threadIdx.x;
    if (i < numElements)
    { C[i] =  A[i]  + B[i]; }
     /* wait  all block_tasks to be completed and */   
     /* block_task  remapping*/
    _SMGuard_Kernel_End //macro
}

//CPU code:
  .. .
int main(int argc, char *argv[]){
  .. .
    vectorAdd<<<blocksPerGrid,         \\
                          threadsPerBlock>>> 
       (d_A, d_B, d_C, numElements);
  .. .
}
// GPU kernel:
__global__ void
vectorAdd(const float *A, 
                 const floa t *B, 
                 floa t *C, 
                 int numElements)
{
    int i = blockDim.x * blockIdx.x +   \\    
                                           threadIdx.x;
    if (i < numElements)
    { 
        C[i] = A[i]  + B[i]; 
    }
}

(a) Original Code (b)Transformed Code

Fig. 9. Transformed GPU program example (vectorAdd) using SMGuard
API (inserted codes are shown in bold font).

resources are evicted. Besides, the information about which
block-tasks are not processed should also be recorded on
exiting. Considering that block-tasks are processed in turn
in each worker, it is enough to just record the ID of next
block-task should be processed in each exiting worker.

For these uncompleted block-tasks, a relaunch of the
kernel task, which is adopted in previous works, can com-
plete all these uncompleted block-tasks. However, different
from previous works, SMGuard provides an online block-
task remapping mechanism illustrated in Fig. 8 to avoid
unnecessary kernel relaunch. Block-tasks, which are not
completed because of eviction, will be remapped to remain-
ing workers. After each worker completes originally as-
signed block-tasks, they will first check if resource eviction
happened. If resource eviction has happened, workers have
to know which block-tasks of the evicted workers should
be remapped to them. To get that information, workers first
get the number NumberPerCapSM of evicted CapSMs will
remapped to each not evicted CapSM:

(5)
NumberPerCapSM

=

⌈
evictCapSMFlag

CapSMQuota − evictCapSMFlag

⌉
Then, the remapped CapSM range of each worker is also
calculated. The start CapSM ID StartCapSMId is:

(6)StartCapSMId = (CapSMId − evictCapSMFlag)

∗NumberPerCapSM

and the end CapSM ID EndCapSMId is:

(7)EndCapSMId = StartCapSMId +NumberPerCapSM

Gotten the above information, each worker in CapSMs
that are not evicted will process those uncompleted
block-tasks of the corresponding worker in each CapSM
in the remapped CapSM range from StartCapSMId to
EndCapSMId in a loop. Before a worker begins to process

TABLE 2
Hardware and software specifications

Specifications

Hardware CPU:Intel Xeon E5-2620 v4 @ 2.10GHZ
GPU:Nvidia GTX 970

Software
OS:Centos 7.3 x86 64 with kernel 3.10.0-514
GPU driver:375.26
CUDA version:8.0

the uncompleted block-tasks of an evicted worker, its global
ID PBlockId will be changed to the following value:

(8)PBlockId = CurCapSMId ∗MaxActivePBlock

+WorkerIdxInCapSM

This allows the worker to process the uncompleted block-
tasks of an evicted worker as if it were the evicted worker
itself. The above details of online block-task remapping
mechanism are illustrated in line 14-27 of Algorithm 2.

5.3 SMGuard API and Code Transformation

For the convenience of code transformation, we define a set
of SMGuard API for both GPU kernel and CPU code. Fig. 9
shows the example of using the API. All APIs are declared
in the SMGuard.h header file, thus the header file should
first be included to use the SMGuard API. Before submitting
kernel task to GPU for execution, the SMGuard Kernel Init
API provided by SMGuard runtime will be invocated. SM-
Guard Kernel Init first does some initialization and allocates
structure for the corresponding kernel, then SMGuard gets
the actual resource allocated to that kernel task accord-
ing to Algorithm 1. In this paper, the resource decision
method and resource requirement for each task are ob-
tained from a configuration file. However, it should be
noted that SMGuard runtime can be easily extended with a
similar performance model proposed in previous work [5] to
predict resource requirements dynamically. After resource
decision, the grid size of kernel task is changed to the value
represented by macro SMGuard gridSize. Moreover, some
extra parameters are needed for GPU-side proxy to perform
functions illustrated in Algorithm 2. These parameters are
declared as macro SMGuard declareParams, and the actual
parameters passed to the launched kernel are represented
by macro SMGuard runParams. Each kernel invocation is
wrapped up by two macros: SMGuard Pre Kernel Launch,
which waits the kernel to be launched by SMGuard runtime,
and SMGuard Post Kernel Launch, which guarantees all
block-tasks are completed. Besides, the kernel body is also
wrapped up by two macros: SMGuard Kernel Begin and
SMGuard Kernel End, and the blockIdx in kernel body is

changed to taskIdx. The two macros help to convert the
entire kernel body into the body of a loop, and detailed
information about the macros can be found in previous
sections.

To achieve automatic code transformation, we design a
source-to-source compiler to transform original GPU pro-
gram into SMGuard enabled version. The compiler is im-
plemented based on clang LibTooling and LibASTMatchers
[24], which can be used to manipulate the abstract syntax
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TABLE 3
Benchmark specification

Benchmark Source Kernel Gride
size Duration TB size TBs

/SM
Transformed

PBs/SM
nn Rodinia [25] euclid 32768x1x1 0.65ms 256x1x1 8 8

particlefilter
(pl) Rodinia [25] kernel 79x1x1 2.81ms 128x1x1 16 161563x1x1 312.51ms

pathfinder
(pf) Rodinia [25] dynproc kernel 23149x1x1 3.7ms 256x1x1 8 8

myocyte
(mc) Rodinia [25] solver2 4x1x1 531.73ms 32x1x1 16 1296x1x1 2123.46ms

lavaMD
(md) Rodinia [25] kerne gpu cuda 64x1x1 6.74ms 128x1x1 10 91000x1x1 143.61ms

matrixMul
(mm) CUDA SDK [26] matrixMulCUDA 32x32x1 4.12ms 32x32x1 2 2128x128x1 236.91ms

vectorAdd
(va) CUDA SDK [26] vectorAdd 156250x1x1 3.15ms 256x1x1 8 8

blackscholes
(bs) CUDA SDK [26] BlackScholesGPU 39063x1x1 1.34ms 128x1x1 16 16390625x1x1 13.33ms
bfs SHOC [27] BFS kernel warp 3907x1x1 2.01ms 1024x1x1 2 2

md5hash
(md5) SHOC [27] FindKeyWithDigest

Kernel
2605x1x1 1.67ms 384x1x1 5 525432x1x1 39.13ms

tree of CUDA program (both CPU code and GPU code)
directly. The source-to-source compiler first extracts the
syntax tree of CUDA program then inserts above header
file and APIs at corresponding positions.

6 EVALUATION

In this section, we evaluate the efficiency of SMGuard for
eliminating the performance interference of application co-
location as well as improving resource utilization on GPU.

6.1 Experimental Setup

The hardware and software specifications in our experi-
ments are showed in Table 2. CUDA MPS is used to enable
concurrent task execution on GPU. As shown in Table
3, Benchmarks are chosen from three benchmark suites,
including Rodinia [25], CUDA SDK [26] and SHOC [27]
benchmark suite. We show the grid size, the thread block
size, the average kernel duration when runs alone on the
GPU, the maximal number of concurrent thread blocks of
original kernel per SM can host and the maximal number of
concurrent thread blocks of transformed kernel per SM can
host. We select a subset of benchmarks from each bench-
mark suite so that they show diverse characteristics. From
these benchmarks, we select pl, mc, md, mm, bs and md5 as
batch applications, and nn, pf, va and bfs as LS applications.
All LS applications use the reservation based method to
get enough resources to ensure their performance, and all
batch applications use the quota based method to limit their
resource usages.

Based on these benchmarks, we co-locate each LS appli-
cation with all batch applications, and a LS application and
a batch application form a co-location pair A+B. In each co-
location, LS application issues its requests for GPU 1ms after
the batch application. To ensure the statistical significance of
the experimental results, every experiment is conducted 20
times and the average result is recorded. Besides, we also
evaluate SMGuard on a real application (LULESH [28]), and
the results show that the performance of LULESH can be

improved by about 7.6× on average when co-located with
other applications, and the average introduced overhead
of the turnaround time is only about 5.7%. The results
demonstrate that SMGuard is effective to preserve GPU
resources for real applications such as LULESH.

We use the metrics suggested by [29] to characterize
co-location performance. Average normalized turnaround
time (ANTT) is used to quantify the slowdown due to co-
location, which is defined in Equation 9, where N denotes
the number co-located kernels, T c

i is the kernel duration
when a kernel is executed under co-location, and T s

i is the
kernel duration when a kernel is executed alone. System
overall throughput (STP) defined in Equation 10 measures
the progress of the system under co-location, where param-
eters are the same as in ANTT.

ANTT =
1

N

N∑
i=1

NTT =
1

N

N∑
i=1

T c
i

T s
i

(9)

STP =
N∑

i=1

T s
i

T c
i

(10)

6.2 Results on Resource Reservation

6.2.1 Efficiency of CapSM
SMGuard uses CapSM as the resource management unit to
provide a flexible way to guarantee the reserved resources
for LS tasks. We use Filling & Retreating mechanism (SM) as
the baseline to demonstrate the efficiency of CapSM. Fig. 10
shows the normalized performance degradation of CapSM
over SM. The x-axis indicates the benchmark pair A+B,
and we restrict the resources used by batch application B
and reserve the rest resources to LS application A. The y-
axis shows the kernel execution time of A using CapSM
based resource reservation mechanism normalized to the
kernel execution time of A using Filling & Retreating based
mechanism. To accurately collect performance data of A
using the reserved resources when co-located with B, we
run B with large input and A with smaller input to make
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Fig. 10. Normalized performance degradation of CapSM based resource
reservation over Filling & Retreating based resource reservation.

B occupy allocated resources as long as possible, which
ensures when A request the GPU resource, B is still running
on the GPU with allocated resources. In addition, to set
enough time for B to evict designated SMs when using
Filling & Retreating mechanism, we let B run first and then
launch A after 1ms interval. The experiments are repeated
multiple times with different number of reserved SMs and
CapSMs, and the average results are shown in Fig. 10.

Results shown in Fig. 10 reflect the efficiency of CapSM
to reserve GPU resources. We observe that the normalized
performance degradation of CapSM compared to SM is
only 1.049× on average, which means that CapSM can
be considered equivalent to SM if the slight performance
loss is tolerated. There are a few cases, such as nn+mc,
nn+mm, bfs+mc and bfs+bs, where the normalized perfor-
mance degradations are close to 1.2×. However, unlike
Filling & Retreating mechanism, which enables each SM
exposed to only one kernel, CapSM allows thread blocks
from different kernels being dispatched to the same SM,
which may lead to shared resource contention. Although
the performance degradation is close to 1.2× in the worst
case, the overall turnaround time of the application does not
increase significantly. The reason is explained in section 6.4.
Considering CapSM provides a more flexible and efficient
way of managing GPU resources, it is beneficial to use
CapSM as the resource management unit.

6.2.2 Response to Bursty Task

Reservation based resource management mechanism pre-
vents batch tasks from exhausting all resources and retain
enough resources for LS tasks. Thus, when LS tasks, spe-
cially when the tasks are bursty, are launched onto the GPU,
they can immediately obtain required resources and begin
to run. To evaluate the effect of different amount of reserved
CapSMs on the performance of LS tasks, we run several
pairs of co-location (A+B). Each application B in the co-
location pair keeps invoking its kernel in a loop, and each
application A will invoke its kernel in a random interval to
simulate bursty tasks. When using the resource reservation,
each kernel from application B is assigned with different
number of CapSMs and task A use the rest of the resources.
We use the performance of A in its standalone run as the
baseline. As shown in Fig. 11, as the number of reserved
CapSMs increases, the performance of A is approaching the
baseline. When the number of reserved CapSMs is less than
8, the performance degradation changes rapidly with the
increase of reserved CapSMs. When the reserved number
of CapSMs reaches to 8, the performance degradation of A
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Fig. 11. Performance degradation of bursty LS kernels over standalone
performance with different number of reserved CapSM.

in most co-location pairs is less than 2× of the baseline.
As the number of reserved CapSMs continues to increase,
the performance variation becomes small. Thus, using SM-
Guard, the resources available to a kernel can be effectively
reduced while the reduction in performance is maintained
at a relatively low level. In the following experiments, the
default number of reserved CapSMs is 8 if not specified
explicitly.

6.2.3 Turnaround time and Throughput
Fig. 12 presents the performance improvements for LS appli-
cations. Compared to MPS based co-locations, our approach
achieves the performance speedup of LS applications by
9.8× on average and up to 55.2× (nn co-located with md5).
The minimum speedup is 1.9× in the case of va co-located
with bs. The reason for the varying speedup is that different
applications have different kernel execution time and re-
quirements for computing resources. Therefore, the extent of
performance interference varies across co-located pairs. For
instance, with nn, its kernel execution time is only 0.65ms
when running alone and hence its turnaround time is quite
sensitive to waiting time under MPS based co-locations.
With SMGuard, it reserves a certain amount of resources
to reduce the waiting time for nn. In addition, although
the kernel execution time of mc is up to 2123ms, it does
not expose too much interference on its co-locators. This is
because mc only needs 6 SMs to host all its launched thread
blocks, which generates less interference to its co-locators
even in MPS based scheduling. Therefore, the speedups of
its co-locators using SMGuard over MPS are relatively low.

Fig. 13 shows the ANTT of each co-location pair in
SMGuard and MPS respectively. The default MPS based co-
locations causes the ANTT increase up to 30.3 in the worst
case and the average ANTT of all the co-location pairs is
6.5. Besides, the ANTTs of different co-location pairs in MPS
differ greatly between 1 and 30. On the contrary, the ANTTs
in SMGuard fit in a smaller range and the average ANTT
of all co-location pairs is only 1.56. Note that the average
ANTT improvement with SMGuard is 4× over MPS, which
is less than the performance improvement of LS kernels
only. This is because the ANTT is the average NTT of the
two kernels in a co-location pair. Although the performance
of LS kernel is improved significantly, it is offseted by the
performance degradation of batch kernel due to limited
resource quota.

Fig. 14 shows that SMGuard improves the performance
of LS applications while increasing the overall system
throughput (STP). The average STP of SMGuard is 1.57
while 1.22 in MPS. Compared to MPS, the STPs of most co-
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Fig. 12. Performance improvement for LS kernels over MPS.
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Fig. 13. Average normalized turnaround time (ANTT) comparison.

location pairs are increased with SMGuard, the SPTs reduce
in very few cases such as pf co-located with pl, bfs co-located
with pl and va co-located with bs. In these three cases, the
performance improvement of LS kernels is less than the
performance degradation of batch co-locators, thus the STPs
in these cases decrease. Note that, in systems that LS appli-
cations co-located with batch applications, guaranteeing the
performance of LS applications is prioritied over improving
overall system throughput.

6.3 Results on Dynamic Resource Adjustment
6.3.1 Runtime Task Eviction
Through runtime task eviction, SMGuard can release the
occupied resources in the middle of the batch kernel exe-
cution on GPU. To measure the duration of this process, we
invocate each kernel repeatly in a loop, and send an eviction
signal to the kernel randomly after each invocation. Both the
signal time and the completion time are recorded to measure
the duration. Fig. 15 shows the average eviction duration of
each kernel. Eviction durations of nn, va and bfs are less than
0.5ms, whereas the eviction duration of mc is over 800ms.
The time difference among the above cases is due to the
eviction mechanism. Since the eviction flag is checked at the
end of a block-task, the eviction is delayed as long as the
length of a block-task. Workload mc contains a large block-
task, which is more than 1000ms. Therefore it is reasonable
that the average eviction duration of mc is very long. That
result also proves that just preemption mechanism is not
enough and resource quota is also necessary in co-location
to ensure LS tasks obtain enough resources as quickly as
possible. For large batch kernels, enough resources can be
reserved for LS kernels to avoid the long eviction operation.
And for small batch kernels, since they can release resources
quickly when LS kernels arrive, more resources are assigned
to them to improve GPU utilization.

6.3.2 Online Block-Task Remapping
To evaluate the performance of online block-task remap-
ping, for each kernel, we first fill all SMs or CapSMs with
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Fig. 14. The comparison of overall system throughput (STP) between
SMGuard and MPS.
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Fig. 15. The average eviction delay for different kernels.

each kernel, then evict certain number of SMs or CapSMs.
Fig. 16 shows the normalized kernel latency using SMGuard
and Filling & Retreating mechanism. In Filling & Retreating
mechanism, if a kernel is evicted, it needs to be relaunched
more than once to complete uncompleted block-tasks. We
observe the normalized latency of Filling & Retreating
mechanism is 1.8× of the baseline on average and up to 2.9×
in the worst case. And the normalized latency of SMGuard
is 1.2× of the baseline on average and up to 1.7× in the
worst case, which is better than the Filling & Retreating
mechanism. The reason for the significant difference is
that there is no online block-task remapping in Filling &
Retreating mechanism and the evicted kernel needs to be
relaunched in order to complete the evicted block-tasks. On
the contrary, in SMGuard, block-tasks in evicted CapSMs are
dynamically remapped to remaining CapSMs and all block-
tasks are completed in one kernel invocation, which avoids
unnecessary relaunch of preempted kernel.

It should be noted that there is no delay between the
two invocations of the preempted kernel in the above ex-
periment and the kernel can use all GPU resources in the
second invocation. However, in realistic, when a kernel
is preempted, the evicted SMs are usually occupied by
other kernel for a period of time, and thus the block-tasks
dispatched to the evicted SMs are not executed until the
evicted SMs are available again. This is because block-tasks
are dispatched according to SM IDs in Filling & Retreating
mechanism and each SM is only responsible for the block-
tasks assigned to it. In other word, one SM can not process
block-tasks evicted from other SMs even if it is idle.

6.4 Overhead Analysis

To evaluate the overhead introduced by SMGuard, we run
original and transformed versions of each benchmark re-
spectively. Then we calculate the execution time difference
of the transformed and original versions, and use the ratio
between execution time difference and original execution
time as the overhead. To make the evaluation statistically
significant, each benchmark is executed 20 times and the
average results is reported. Both kernel execution time
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turnaround time of different benchmarks over baseline.

and overall turnaround time of each benchmark are pre-
sented. Fig. 17 demonstrates that the introduced overhead
of SMGuard for both kernel execution time and overall
turnaround time of most benchmarks are less than 5%.
Specifically, the average introduced overhead of SMGuard
for kernel execution time and turnaround time are only
3.87% and 1.58% respectively. This indicates that SMGuard
itself does not introduce too much overhead to the original
kernels. The introduced overhead for turnaround time is
not always consistent with execution time, this is because
if the kernel execution time takes only a small proportion
of the overall turnaround time, such as nn, pf and bs, the
introduced overhead for kernel execution time does not
have a great impact on the overall turnaround time.

6.5 Limitations
In our current implemention of SMGuard, we use static
code compilation to transform original kernel into SMGuard
enabled version. In reality, the source code may not be
available. It is meaningful to enable executable binary to
support SMGuard. To achieve this goal, it is necessary to
take measures for CPU and GPU respectively during the
code loading process. In CPU, the kernel invocation API and
its parameters should be intercepted, which subsequently
are sent to SMGuard runtime for resource management
decision. In Linux, we can combine LD PRELOAD [30] or
libmonitor [31] with symtabAPI [32] to dynamically inter-
cept kernel invocation API and extract its parameters, and
SMGuard can make decisions based on these information.
Unlink CPU, the GPU kernel is a pure function and doesn’t
invocate any CUDA API. We can use the just in time kernel
code rewriting mechanism proposed in GPES [20] to explore
possibilities to dynamically insert all needed code segments
to .cubin files when loaded. We would like to explore the
method of dynamic API intercepting and kernel rewriting
mechanism in our future work.

7 RELATED WORK

There has been a large amount of previous works [3], [4],
[7], [8], [9], [10] focus on resource contention when co-

running batch workloads with LS workloads. Ubik [7] and
Vantage [8] use fine-grained cache partition mechanism to
boost the allocation for LS workloads. Elfen [9] reserves
the two SMT lanes in a core to a batch thread and a LS
thread respectively and only run the batch thread when
no LS thread is executing. Dirigent [10] first accurately
predicts the completion time of a running task then controls
resource during the tasks execution to meet deadlines and
maximize batch throughput. Bubble-Up [3] and Bubble-
Flux [4] identify safe co-locations that bound performance
degradation while improving chip multiprocessor utiliza-
tion. However, all these techniques are applied to CPU not
GPU because of the architecture difference between CPU
and GPU. Baymax [5] provides a task duration modeling
methodology to predict the duration of GPU tasks and
reorders the tasks execution according to prediction results.
Prophet [12] builds detailed analysis models to predict per-
formance interference precisely for application co-location
on GPU.

GPU scheduling is another research direction related
to SMGuard. Kato et al. designed and implemented Time-
Graph [33], RGEM [34] and Gdev [35] for real time system.
TimeGraph is a device driver solution to provide a ker-
nel space real-time GPU scheduler designed for computer
graphics. RGEM supports the same concept as TimeGraph
at the user-space runtime level. Gdev integrates the real-
time scheduler into the open source CUDA framework
they developed. GPUSync [36] is another framework for
managing GPUs in multi-GPU multicore real-time systems.
Suzuki et al. [37] realize real-time GPU resource manage
with loadable kernel models. Xu et al. [38] improves the
schedulability of real-time tasks with mixed timing con-
straints. These techniques focus on increasing throughput
for high-priority tasks, and schedule GPU tasks in priority
order. Thus, when high-priority task is running on GPU,
low-priority tasks need to be blocked even though the GPU
is not fully utilized by high-priority task, which overlooks
the overall system utilization of GPU.

To intercept the execution of a long running kernel, ker-
nel slicing has been adopted by prior works [20], [21], [27] to
support preemptive scheduling. This technique slices long-
running kernel into multiple short-running ones through
invocating the same kernel multiple times but each invo-
cation of the kernel only executes a range of all the thread
blocks. After each short-running sub-kernel completed, the
subsequent sub-kernel invocation can be preempted by
other kernels. Kernel slicing will invocate the same kernel
multiple times even if there is no other kernel need to use
the GPU, thus, unnecessary overhead will be introduced.

Persistent threads [23] is another very important tech-
nique that has been adopted by SM-Centric [16], EffiSha
[17], FLEP [18] and Versapipe [39]. SM-Centric [16] first
proposes the state-of-the-art Filling & Retreating mechanism
using persistent threads to enable tasks can be scheduled to
the suitable SMs. EffiSha [17] and FLEP [18] put forward
spatial preemption, which can schedule tasks on the block-
task level, on the basis of Filling & Retreating mechanism.
Versapipe [39] also relies on SM-Centric to bind kernels
onto target SMs and map blocks on corresponding SMs
for pipelined computing. SMGuard adopts a similar tech-
nique based on persistent threads, but the difference is
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that SMGuard doesn’t have to fill the whole GPU when a
kernel is launched. Besides, SMGuard supports a hardware
independent preemption mechanism while the spatial pre-
emption in [17], [18] only works in Nvidia GPU with CUDA
programming model.

At the hardware level, many works [13], [14], [15], [40],
[41] exploit hardware mechanisms for multitask situations.
Aguilera et al. [40] propose a runtime technique in GPU to
dynamically partition GPU resources between concurrently
running applications to satisfy QoS requirements. Tanasic et
al. [14] propose a SM-draining technique that improves per-
formance of high priority processes by enabling preemptive
scheduling on GPUs. However, the SM-draining technique
can cause long preemption latency. To address the long
preemption latency, Park et al. [15] propose SM-flushing,
which can immediately stop the execution of a kernel and
flush all intermediate results. Lin et al. [41] reduce the
overhead of context switching by compressing the TB-level
state. Adriaens et al. [13] demonstrate the potential benefits
of spatial multitasking using simulation. All these works
are done in simulator [42] and need hardware modifications
or extensions for realistic use, which are impractical to be
applied in commodity GPUs immediately.

8 CONCLUSIONS

In this paper, we propose a flexible and fine-grained re-
source management framework SMGuard, for application
co-location on GPU. SMGuard allows multiple applications
to share the GPU resources under a controllable perfor-
mance degradation. SMGuard uses the capacity based SM
model CapSM as the resource management unit. Through
CapSM, SMGuard implements a flexible resource quota
mechanism to prevent batch tasks from exhausting all avail-
able resources and reserve enough resources for LS tasks.
Thus, when a LS task is launched onto the GPU, it can
immediately obtain needed resources and begin to run.
The resource reservation mechanism improves the response
latency of the LS task. SMGuard also supports dynamic
resource adjustment to manage the resource quota of the
batch task during runtime and remap preempted block-
tasks into remaining resources without relaunching the
preempted task. The experiments show that SMGuard im-
proves the performance of the LS tasks by 9.8× on average.
In addition, the overall system throughput is also improved
by 35% on average. With the benefits of online block-task
remapping, the normalized latency of the preempted tasks
is reduced by 60% on average. SMGuard does not rely on
special hardware or programming model, and can be easily
adopted on commodity GPUs.
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