
1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

1

Profit-Driven Dynamic Cloud Pricing for
Multiserver Systems Considering User

Perceived Value
Peijin Cong, Liying Li, Junlong Zhou, Kun Cao, Tongquan Wei, Mingsong Chen, and Shiyan Hu

Abstract—With the rapid deployment of cloud computing infrastructures, understanding the economics of cloud computing has
becoming a pressing issue for cloud service providers. However, existing pricing models rarely consider the dynamic interaction between
user requests and the cloud service provider, thus can not accurately reflect the law of supply and demand in marketing. In this paper,
we first propose a dynamic pricing model based on the concept of user perceived value in the domain of economics that accurately
captures the real supply and demand situation in the cloud service market. Subsequently, we design a profit maximization scheme
based on the dynamic pricing model that optimizes profit of the cloud service provider without violating user service-level agreement.
Finally, we propose a dynamic closed loop control scheme to adapt the cloud service price and multiserver configurations to the changes
in cloud computing environment. Extensive experiments using data extracted from real-world applications validate the effectiveness of
the proposed user perceived value-based pricing model and the dynamic profit maximization scheme. Our proposed profit maximization
scheme achieves 31.32% and 22.76% more profit compared to two state of the art benchmarking methods, respectively.

Index Terms—Cloud computing, dynamic pricing model, user perceived value, profit maximization, closed loop control.

F

1 INTRODUCTION

C LOUD computing has become an effective commercial
computing model that distributes user requests on a

pool of servers and delivers hosted services over Internet.
As a business model, it turns resources of computing, stor-
age, and communication into ordinary commodities and
utilities in a pay-as-you-go manner [1], [2], [3], [4], [5]. It
is natural for cloud service providers to pursue the goal of
profit maximization. Thus, the cloud service pricing strategy
is of particular importance to cloud service providers.

The pricing model of a cloud service provider in cloud
computing consists of two parts, namely, the revenue and
the cost [6]. From the perspective of a cloud service provider,
the revenue is the income that the cloud service provider
has from the sale of cloud services to users. The cost is the
expenditure that includes not only the rental and electricity
fees to operate multiserver systems, but also the reward
and penalty paid by the cloud service provider to users
based on service-level agreement. Profit maximization can
be achieved by increasing revenue or reducing cost. On one
hand, cloud service providers attempt to increase revenue
by setting a high price for cloud services and attracting
a great amount of service purchases. However, service
price and purchase amount interplay and cannot be opti-
mized simultaneously [7]. On the other hand, cloud service
providers try to reduce operating cost. Thus, aspects such
as multiserver configurations and electricity price should be
considered in cloud pricing modeling.

Numerous investigations have been made into pricing
mechanisms for profit maximization in cloud computing.
Fixed pricing strategies such as pay-per-use, subscription
based pricing, and tiered pricing are the most common pric-
ing methods used by major cloud service providers [8], [9],
[10]. For example, Li [8] proposed a flat rate pricing strategy
that sets a fixed price for all service requests. Kesidis et al.

[9] pointed out that usage-based pricing strategy can use
cloud resources more efficiently when compared with flat
rate pricing strategy. However, these fixed pricing methods
cannot meet the dynamic needs of users and cannot reflect
the market situation of supply and demand.

The disadvantages of fixed pricing strategies necessitate
dynamic pricing strategies that adjust price of cloud services
according to market situations and user requirements for
service quality. Macias et al. [11] proposed a genetic model
based dynamic pricing strategy that obtains optimal pricing
in an iterative way. This strategy offers competitive prices
in the negotiation of services in cloud computing markets.
Amazon [12], [13] utilized a spot pricing strategy that dy-
namically adjusts prices for a virtual service instance to
accommodate changes in supply and demand. Based on a
study of the spot price history of Amazon, Xu et al. [14]
proposed a dynamic pricing strategy to better understand
the current market demand. Zhao et al. [15] designed an
efficient online algorithm for dynamic pricing of virtual
machine resources across datacenters in a geo-distributed
cloud to pursue long-term profit maximization. Although
these works investigate dynamic pricing strategies from
different perspectives, the service-level agreement is not
considered in the presented pricing mechanisms.

A service-level agreement is defined as an official com-
mitment that prevails between a service provider and a
client [16]. It uses a price compensation mechanism that
gives users certain compensations when their service re-
quests are processed with low quality of service. Cao et
al. [6] presented a pricing model that takes the service-
level agreement and the consumer satisfaction into consid-
erations to maximize the profit of cloud service providers.
Ghamkhari et al. [17] proposed a two-tier ladder-like charg-
ing method to ensure user satisfaction. A cloud service

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

2

provider will charge users if user requests are processed
before deadlines, the cloud service is free otherwise. Lee
and Irwin [18], [19] et al. claimed that the price of the
cloud service will decrease as the waiting time of service
requests grows until the cloud service is free. These works
study the service-level agreement to ensure user satisfaction
in the pricing process for profit maximization. However,
they ignore the crucial concept of user perceived value in
traditional market environment, which reflects the users’
willingness to purchase cloud services and ultimately has
influence on the profit of cloud service providers.

In this paper, we propose a user perceived value-based
dynamic pricing mechanism that conforms to the law of
supply and demand in economics. The novel contributions
of this paper are summarized as follows:

• We propose a dynamic pricing model that considers
the interaction between cloud users and the cloud
service provider. The model built upon the concept of
user perceived value, user reward, and cloud service
provider penalty in the domain of economics accu-
rately captures the dynamics of supply and demand
in cloud pricing strategies. In particular, user per-
ceived value is nicely modeled using kernel density
estimation method.

• We propose a profit maximization scheme based on
the dynamic pricing model to optimize the profit
of the cloud service provider by configuring multi-
server systems under the constraint of service-level
agreement. The proposed scheme includes a runtime
control loop that specifically considers the dynamic
cloud computing environment such as fluctuating
electricity bill and rental fees that are not integrated
in the pricing model.

• Extensive simulation experiments show that the pro-
posed scheme not only follows the supply and de-
mand law in market, but also is superior to the state
of the art benchmarking cloud pricing mechanisms.
The proposed scheme achieves 31.32% and 22.76%
more profit as compared to two state of the art
benchmarking methods, respectively.

The remainder of the paper is organized as follows.
Section 2 presents the system architecture and models,
Section 3 presents the problem definition and overview of
the proposed scheme. Section 4 describes the proposed user
perceived value-based pricing mechanism. The effectiveness
of the proposed scheme is validated in Section 5 and con-
cluding remarks are given in Section 6.

2 SYSTEM ARCHITECTURE AND MODELS

We consider a common three-tier cloud service provi-
sion structure that consists of cloud users, cloud service
providers, and cloud infrastructure vendors [6], [18], [20].
Among the three entities that form a market in cloud
computing, the infrastructure vendor charges the cloud
service provider for renting infrastructures to deploy service
capacity, and the cloud service provider charges cloud users
for processing their service requests. In this paper, cloud
users and the cloud service provider are of our particular
interest. We introduce our cloud user model and cloud
service provider model in the following subsections.

2.1 Cloud User Model
To maximize the profit of a cloud service provider, the cloud
service provider needs to know the aggregate demands of
all users. When a cloud service provider sets up the price
of a service, different users have different responses to this
price. In this paper, we propose a user perceived value
oriented pricing strategy for cloud computing services. In
this subsection, we introduce the concepts of user perceived
value and user request (or demand) distribution.

2.1.1 User Perceived Value
In conventional markets, the arrival rate of customers to a
store is often a response to their regular buying patterns
rather than a reaction to individual prices [7]. Thus, it is
reasonable to assume that the change of the list price has no
effect on the total number of customers who are visiting the
store. Typically, not all of the customers are willing to buy a
specific commodity. That is, the total number of customers
who buy commodities are no larger than the total number
of people that visit the store.

Customer perceived value is the fundamental basis for
all marketing activities [21]. It reflects the worth that a prod-
uct or service has in the mind of a consumer and has been
widely used in modeling other markets [22]. In general,
customers are unaware of the true cost of production for
the products they buy, instead, they simply have an internal
feeling for how much certain products are worth to them.
In the conventional market environment, only the customer
whose perceived value is higher than the real price of the
product is willing to pay for the product. As with conven-
tional market commodities, the cloud computing service can
be seen as a special commodity which follows market rules.
That is, the price of cloud computing service is also dictated
by the supply and demand in the market.

In this paper, we use Xi to denote the perceived value
that user i has for the service. Xi is a continuous random
variable and 0 ≤ Xi <∞ holds. As with other benchmark-
ing pricing models [23], X1, X2, · · · , Xn are assumed to be
independent and identical random variables. The probabil-
ity density function of the perceived value X , denoted by
f(x), is known or can be estimated a priori. Perceived value
is a process of valuing and is much harder to determine.
Roig et al. [24] observed that the customer value is perceived
by customers, and cannot be determined objectively by the
seller. Factors such as scarcity, marketing efforts, novelty,
and brand associations all play into customer perceived
value [25]. Usually, consumers will offer a range of price
options. Thus, in the experimental section, we use a nor-
mal distribution to describe the initial distribution of user
perceived value. Subsequently, we fit the probability distri-
bution using kernel density estimation based on historical
price data. Kernel density estimation is a non-parametric
way to estimate the probability density function of a random
variable based on a finite data sample [26].

In the following sections, we adopt the terminology
of customer perceived value used in traditional market
environment. We take the cloud computing environment
as a store and the cloud computing service is deemed as
a special commodity provided in the store. The terminology
of customer perceived value and user perceived value are
used interchangeably.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

3

2.1.2 User Demand Distribution
Unlike traditional methods that use the expected demand
to model user behavior [23], [27], we use the probability
distribution of the total demands in this work to model user
service requests. We consider a slotted time model that deals
with the pricing decision and constraints for sales periods
T of equal length. Let τ denote the length of each time slot
over the sales period T , and N be the number of time slots τ
over the sales period T . That is, T = N × τ . A cloud service
provider sets list price for the service at the beginning of
regular sales periods. The list price during each sales period
is assumed to be constant, but varies from period to period.

Suppose that the cloud service provider will charge ω
per user for a specific cloud service during a sales period
T . Let n denote the total number of users that have interest
in the service at the price of ω during the sales period T ,
and λu denote the number of users arriving per unit time,
respectively. n is assumed to be independent of all other
parameters of the system, and is a discrete Poisson random
variable distributed as [27]

P (n|λu) =
(λuT)ne−λuT

n!
, n = 0, 1, 2, · · · ,∞. (1)

The user arrival rate λu may not be constant in many situ-
ations. Taking into account the heterogeneity of arrival rate,
a Gamma distribution characterized by parameters (α, β)
is utilized to represent the arrival rate λu, the probability
density function of which is given by

g(λu) =
1

Γ(α)βα
λ

(α−1)
u e−λu/β , 0 ≤ λu ≤ ∞, (2)

where the expectation and variance of λu is given by
E[λu] = αβ and V ar[λu] = αβ2, respectively, and Γ(α)
is a complete gamma function.

Among the n users, any one whose perceived value of
the service is no less than the list price ω is considered as a
potential buyer of the service. Let m denote the number
of potential buyers. It is a non-negative discrete random
variable taking the value of 0, 1, 2, · · · ,∞ and m ≤ n holds.
Based on user perceived value, in this subsection, we use
F (ω) to represent the cumulative distribution function of
x evaluated at ω. The F (ω) is a non-decreasing function
of ω, and 0 6 F (ω) 6 1 and lim

ω→∞
F (ω) = 1 hold [28].

Let Pω(m|n) indicate the probability that m out of n users
are inclined to buy in the sales period when the service
price is set equal to ω. It follows a binomial distribution
of probability, which is given by

Pω(m|n) =
�
n
m

�
[1− F (ω)]m[F (ω)](n−m). (3)

Combining (1)-(3), we can derive the probability of hav-
ing m potential buyers during the sales period T when the
service price is set equal to ω. The probability is denoted by
Pω(m) and given by

Pω(m) =

Z ∞
λu=0

∞X
n=0

Pω(m|n)P (n|λu)g(λu)dλu

=
�
m+α−1

m

�
[
βT [1− F (ω)]

1 + βT [1− F (ω)]
]m[

1

1 + βT [1− F (ω)]
]α. (4)

Clearly, it is a negative binomial distribution. As a result,
the expected number of actual buyers of the service at price
ω during sales period T , which is denoted by Eω(m), can
be calculated as

Eω(m) = αβT (1− F (ω)), (5)

where α and β are parameters of the Gamma distribution of
user arrival rate λu, and F (ω) is the cumulative distribution
function of x evaluated at ω. The revenue of the cloud
service provider in a sales period T is thus given by

Revenue = ω × Eω(m) = ωαβT (1− F (ω)). (6)

2.2 Cloud Service Provider Model

The cloud service provider rents a multiserver system that
is constructed and maintained by an infrastructure vendor
to serve user service requests. The architecture details of the
multiserver system are quite flexible [6]. They can be blade
centers where each server is a server blade [29], clusters
of traditional servers where each server is an ordinary
processor [30], and multicore server processors where each
server is a single core [31]. For the ease of presentation, these
blades/processors/cores are simply called servers. Users
submit their service requests to the cloud service provider,
and the cloud service provider serves these service requests
(i.e., run these tasks) on the multiserver system.

2.2.1 Multi-Server Model

We consider a multiserver system that consists of M ho-
mogeneous servers operating at a common speed of s. The
multiserver system can be modeled as an M/M/M queuing
system where arrivals of user service requests governed by
a Poisson process form a single queue and M servers can
process these service requests in parallel. Let % be the service
rate of user service requests that arrive at the rate of λu. It is
clear that % user service requests can be processed by servers
if the number of user service requests in the system is not
greater than M . The service time of a user service request
on a server is an exponential random variable denoted by
x1 = r/s with mean x1 = r/s, where r is the number
of instructions to be executed for the service request. A
first-come-first-served (FCFS) queue of infinite capacity is
maintained by the multiserver system for waiting tasks
when all the servers are busy. Let ρ be server utilization,
which is defined as the average percentage of time that a
server is busy. It can be expressed as

ρ =
λu

M%
=

λu

M s
r̄

=
λur̄

Ms
. (7)

Let Pk be the probability of k service requests being
waiting or processing in the M/M/M queuing system.
Based on queuing theory [6], [32], [33], Pk is given by

Pk =

�
P0

(Mρ)k

k!
, k ≤M

P0
MMρk

M !
, k ≥M

, (8)

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

4

where P0 is the probability that there are no tasks in the
queue, and is formulated into [32]

P0 = (

M−1X
k=0

(Mρ)k

k!
+

(Mρ)M

M !
·

1

1− ρ
)−1.

The probability that there are exactM service requests in the
system is thus given by PM = P0

(Mρ)M

M ! . Through Taylor
series expansions of

PM−1
k=0 (Mρ)

k
/k! ≈ eMρ and M ! ≈√

2πM(Me)M , it can be rewritten as

PM =
1− ρ

√
2πM(1− ρ)(e

ρ−1

ρ
)M + 1

. (9)

This form of PM is necessary for deriving multiserver con-
figurations in Section 4.

When all the servers in the system are busy, a newly
submitted service request must wait and will be inserted
into the FCFS queue. Let Pq denote the probability of
queuing a newly arrived task when no servers are idle at
the time of arrival. Pq can be formulated as

Pq =

∞X
k=M

Pk =
PM

1− ρ
. (10)

Let N be the average number of requests being waiting or
executing in the multiserver system. N is calculated as

N =

∞X
k=0

kPk = Mρ+
ρ

1− ρ
Pq . (11)

The average service response time R is defined as the
time elapsed between the time when a service request is
submitted and the time when the service request is finished.
In this paper, it is adopted to evaluate the service quality. It
is in fact the sum of task execution time and waiting time,
and can be derived by applying Little’s Law [34] as

R =
N

λu
= x1(1 +

Pq

M(1− ρ)
) = x1(1 +

PM

M(1− ρ)2
). (12)

The average service response time R is utilized in this paper
as a metric for service-level agreement. If the response time
of a service exceeds the predefined deadline, the service-
level agreement is deemed to be violated.

2.2.2 Bill and Rent

A cloud service provider needs to rent infrastructure and
pay electricity to maintain the operation of the computing
infrastructure. Let δ be the fee the cloud service provider
pays to rent a server per second during a sales period T , the
rent the cloud service provider needs to pay for a system of
M servers during the sales period T is

Rent = Mδ × T. (13)

As a portion of the cloud service cost, electricity fee
has become a significant expense for today’s data centers.
It can be derived by multiplying energy consumed by a
server with electricity price. The energy consumed by a

server can be modeled at different levels of abstraction.
At the abstraction level of digital CMOS circuit, the power
consumption, which is denoted by Ptot, can be modeled as

Ptot = Psta + Pdyn, (14)

where Psta is the static power dissipation while Pdyn is the
dynamic power dissipation. Psta is independent of switch-
ing activity and maintains the basic circuit state, thus can be
deemed as a constant [6]. Pdyn is related to processor switch-
ing activity and dominates the total power consumption,
which can be formulated as a function of supply voltage v
and processing speed s. In addition, the supply voltage is
usually linearly proportional to the processing speed, i.e.,
v ∝ s. The dynamic power consumption Pdyn is then ex-
pressed as ξsγ , where ξ is a processor dependent coefficient
and γ is a constant that equals to 2φ + 1 (φ > 0). Based
on the static and dynamic power consumption described
above, we use the following Equation (15) to denote the
total power consumption of a multiserver system, which is,

Ptot = M((Pdyn − Psta)ρ+ Psta), (15)

where M is the number of servers and ρ is the server
utilization.

Let ET denote the energy consumed by all M servers in
the system during the sales period T . It is given by

ET = M((Pdyn − Psta)ρ+ Psta)× T. (16)

Let CT (ET) denote the price of the energy consumed by
all servers in the sales period T , then CT (ET) can be
formulated as

CT (ET) =

§
kT1 , 0 ≤ ET ≤ lTth
kT2 , ET > lTth

(17)

where kT1 , k
T
2 > 0 are differentiated price and lTth is the

energy consumption threshold in the sales period T . The
electricity bill of the multiserver system in the sales period
T is hence formulated as

Bill = ET × CT (ET)

= M((Pdyn − Psta)ρ+ Psta)× T × CT (ET). (18)

2.3 Reward and Penalty Mechanism
Oftentimes, users have different sensitivities to postponing
their requests. For users whose service requests can be
deferred to a certain extent, the cloud service provider will
reward them based on the degree of deferment. However,
once the deferment of service requests exceeds a threshold,
the cloud service provider will compensate users based on
the degree of the deferment. In the following, we will dis-
cuss the reward and penalty mechanism from perspectives
of users and the cloud service provider, respectively.

2.3.1 User Reward Model
We divide users into I types, each type of users has a
sensitivity to the service deferment of their service requests.
We define a sensitivity factor, denoted by ψi, to quantify the

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

5

sensitivity of users of type i to the deferment of their service
requests, which is denoted by Di. For the users of type i,
the factor ψi is negatively proportional to the sensitivity of
the users to the deferment of their service requests. That
is to say, a larger sensitivity factor indicates a more delay-
sensitive user service request. For users running interactive
applications with no delay tolerance, we set ψi =∞.

The cloud service provider will return more rewards
to those users who are less sensitive to service deferment.
Let Li be the monetary loss of the users of type i due to
their degree of sensitivity to service deferment. The users
with a larger degree of sensitivity (ψi) to service deferment
(Di) will get less rewards from the cloud service provider,
resulting in a larger amount of monetary loss (Li) of the
users of type i. The monetary loss function of the users of
type i is given by Li = ψiDi.

We define a reward function, denoted by ~i, to represent
the reward the cloud service provider returns to users of
type i. The reward ~i is a function of the service deferment
Di, and is given by ~i = θ · log(1 + Di), where θ > 0 and
0 ≤ Di ≤ Dmax hold. θ is called the reward factor and
Dmax is the maximum value of service deferment.

Users need to make decisions on their own service
deferment Di to get the maximum monetary reward from
the cloud service provider based on the monetary loss
and reward function. Thus, the optimization problem is to
maximize (~i − Li) subject to (0 ≤ Di ≤ Dmax), where
Di is regarded as a continuous variable to simplify the
optimization problem, and the solution to the problem is
given by

Di = max(min(
θ

ψi
− 1, Dmax), 0). (19)

Next, substitute Di back into the reward function ~i, we
have

~i = θlog(1 + max(min(
θ

ψi
− 1, Dmax), 0)). (20)

Let Reward denote the total monetary reward returned
to users from the cloud service provider over the sales
period T , then we have

Reward =

NX
N
′
=1

IX
i=1

(~i − Li)λiu[N
′
]τ, (21)

where λiu[N
′
] denotes the arrival rate of the users of type i

in the N
′
th time slot. In practice, the cloud service provider

can learn the sensitivity factor ψi from experiments or
historical data. The adopted user reward model is similar
to the one presented in [35].

2.3.2 Cloud Service Provider Penalty Model
The high degree of user satisfaction is determined by the
fast response of a cloud service provider to users’ ser-
vice requests. Once the service response time exceeds the
threshold value specified in service-level agreement, users
will be compensated by the cloud service provider for low
quality of service. Let s0 indicate the benchmarking speed of
servers. Given server benchmarking speed (s0), the average

response time of service requests (R), and the number of
instructions for each service request (r), the penalty function
of the users of type i, denoted by ui, can be formulated as

ui(r,R) =

8<
:

0, 0 6 R 6 r
s0

+Di

d(R− r
s0
−Di), rs0 +Di < R 6 (1 + ω

d
) r
s0

+Di

ω, R > (1 + ω
d

) r
s0

+Di

(22)

where d is the degree of punishment suffered when the
service-level agreement is violated. Di denotes the service
deferment of the requests of the users of type i, and ω is
the price of the cloud service charged by the cloud service
provider to the users.

The details of Equation (22) are described below. For
the users of type i, if the average response time satisfies
0 6 R 6 r

s0
+Di, the cloud service provider will regard this

execution of the service request as a successful process with
high quality of service and the users will not be compen-
sated by the cloud service provider. Otherwise, if the aver-
age response time satisfies r

s0
+Di < R 6 (1 + ω

d) rs0 +Di,
the cloud service provider will regard this execution of the
service request as a process with low quality of service. In
this case, the compensation provided by the cloud service
provider to the users will increase linearly as the average
response time R increases. Finally, if the average response
time satisfies R > (1+ ω

d) rs0 +Di, the cloud service provider
will regard this execution of the service request as a failed
process and will not charge the users for this execution.

We use Penalty to denote the total compensation pro-
vided by the cloud service provider to users, then we have

Penalty =

NX
N
′
=1

IX
i=1

ui(r,R)λiu[N
′
]τ, (23)

where λiu[N
′
]τ is the average number of user requests of

type i in the time slot τ , and ui(r,R) is the incurred penalty
for the service requests due to low quality of service.

2.3.3 Gross Profit

The gross profit a cloud service provider earns is the total
revenue subtracted by the cost of generating that revenue.
In other words, gross profit is sales minus cost of the
cloud service sold. Assuming the price of cloud service is
constant in a sales period T , the revenue earned is given by
ω ·Eω(m), where ω denotes the service price per user and
Eω(m) indicates the expected number of actual buyers at
price ω during the sales period T .

Besides the reward for flexible users and penalty for
low quality of service mentioned above, the cost of cloud
service provider sold also consists of the cost paid to rent
cloud computing infrastructure, and the electricity expense
incurred by the cloud service provider to maintain the
operation of the computing infrastructure. We define the
profit of the cloud service provider in a sales period T as the
revenue minus the various expenses including the reward
cost, penalty cost, electricity cost, and rental cost, that is,

Profit = Revenue−Reward− Penalty −Bill −Rent, (24)

6

where Revenue, Reward, Penalty, Bill, and Rent are
given in Equations (6), (21), (23), (18), and (13), respectively.

3 PROBLEM DEFINITION AND OVERVIEW OF THE
PROPOSED APPROACH

In this section, we formally define the profit maximization
problem, followed by a brief overview of our proposed
approach to the profit maximization problem.

3.1 Problem Definition

The price of a cloud service interplays with users who
purchase the service, which in turn affects the revenue of
the cloud service provider. This paper aims to maximize
the profit of the cloud service provider by deriving the
optimal number of servers, operating speed of servers, and
price of cloud services provided without violating the user
service-level agreement. We assume that the cloud service
provider optimizes its decisions at the beginning of each
sales period T . Let b1 denote the upper bound on the
power consumption of the M servers, and b2 be the upper
bound on the expected response time of user requests. The
optimization problem we will solve is thus formulated into

Maximize: Profit (25)
subject to: θ ≥ 0 (26)

Ptot ≤ b1 (27)

R ≤ b2 (28)

0 ≤ φi[N
′
] ≤ λiu[N

′
]τ, ∀i ∈ I,N ′ ∈ N (29)

N+bDicX
N
′
=1

(λiu[N
′
]τ − φi[N

′
]) ≥

NX
N
′
=1

λiu[N
′
]τ,

∀i ∈ I,N ′ ∈ N (30)

where Profit, Ptot, and R are given in Equations (24), (15),
and (12), respectively.

In the above formulation, the reward factor θ is non-
negative (Equation 26), the total energy consumption Ptot of
the multiserver within the sales period T can not exceed b1
(Equation 27), and the average service response time R can
not exceed b2 (Equation 28). Equation (29) ensures that the
amount of delayed service requests is nonnegative and not
larger than the total number of service requests in each time
slot τ , where φi[N

′
] and λiu[N

′
]τ are the number of delayed

and total service requests in the N
′
th time slot, respectively.

Equation (30) ensures that the processing of the arrived user
requests of type i in a sales period T can not be delayed
longer than the allowed service deferment Di of the user
service requests. We will then use the augmented Lagrange
multiplier method to solve the optimization problem, which
will be described in detail in Section 4.

3.2 Overview of the Proposed Approach

The optimization problem given in Equation (25) tries to
maximize the Profit of the cloud service provider un-
der the constraints mentioned above. Figure 1 outlines the
overview of our proposed approach to solve the optimiza-
tion problem. We first establish user demand distribution
based on the concept of user perceived value. Subsequently,

based on user demand distribution, we build revenue model
and expenditure model to construct the profit maximization
problem. Then, we propose to solve the optimization prob-
lem by using the augmented Lagrange multiplier method.
Finally, since the parameters of electricity bill and rental
fees will change over time, thus, the cloud computing en-
vironment is dynamic. We use a system monitor to check
wether these environment parameters change, and propose
a dynamic closed loop control scheme to adapt the ser-
vice price and mulitserver configurations to the changes in
these parameters. The details of the proposed scheme are
described in Section 4.

�����������������

���
��������
��������
����������������������

�������������
���
����	�
������
�����	�

��	
��������	���	��

����������
��
��

��������
����������������
����������
����������
�����
������	��������

��		�	�

�
	��
�

��������
������
��
������������������
��������������
����������������

�
�������	��
����	����
���

����	��������
���

Figure 1: Overview of the proposed approach.

4 USER PERCEIVED VALUE-AWARE PROFIT OPTI-
MIZATION SCHEME

In this section, we first use augmented Lagrange multiplier
method to solve the optimization problem and derive the
optimal solution, including the optimal cloud service price,
the number of servers, and the speed of servers. Subse-
quently, we propose a dynamic closed loop control scheme
to adapt the service price and multiserver configurations to
the dynamic cloud computing environment.

4.1 Create Augmented Lagrange Function

Unconstrained optimization can be solved in many ways,
such as steepest descent method [36], Newton’s method
[37], multiplier method [38], etc. However, it is difficult
to optimize constrained optimization directly. A common
method to solve constrained optimization is to transform the
constrained optimization problem into an unconstrained op-
timization problem. Numerous techniques on constrained
optimization have been investigated in the literature [39],
[40], [41]. Of these techniques, the augmented Lagrange
multiplier method is a powerful tool for solving this class
of problems, thus, is adopted in this work to solve the
profit optimization problem given in Equation (25). We first
create the augmented Lagrange function to transform the
constrained optimization problem into an unconstrained
optimization problem, and then use the multiplier method
to solve the unconstrained optimization problem.

The Bill given in Equation (18) is a function of power
consumption of the multiserver system, the length of the
sales period T , and real-time price of electricity. Since real-
time price is flat within each sales period T and T itself

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

7

is constant, the Bill for T is fixed and can be expressed
as Bill = b3Ptot, where Ptot given in Equation (15) is the
total power consumed by the multiserver system and b3 is a
constant coefficient. The profit optimization problem given
in Equation (25) can then be re-written as

8>>>>><
>>>>>:

O(ω,M, s) = ωEω [m]− b3Ptot − δMT

−
NP

N
′
=1

IP
i=1

(~i − Li)λiu[N
′
]τ

−
NP

N
′
=1

IP
i=1

ui(r,R)λiu[N
′
]τ

g1(M, s) = b2 − x1(1 + PM
M(1−ρ)2) ≥ 0

g2(M, s) = b1 −M((ξsγ − Psta)ρ+ Psta) ≥ 0

(31)

where O(ω,M, s) denotes the objective function of Profit
given in Equation (24), and g1(M, s) and g2(M, s) are con-
straint equations of M and s, respectively.

Next, we transform the problem given in Equation (31)
with inequality constraints into an augmented Lagrange
function. Let y be the vector that converts the problem
with inequality constraints to a problem with equality
constraints, and v be the Lagrange multiplier vector, the
augmented Lagrange function is thus given by

φ(ω,M, s, y, v, σ) = O(ω,M, s)−
2X
j=1

vj(gj(M, s)− y2
j)

+
σ

2

2X
j=1

(gj(M, s)− y2
j)2, (32)

where the constant parameter σ denotes the penalty factor
and σ > 0 holds. The augmented Lagrange function given
in Equation (32) can be converted into the form of

φ(ω,M, s, y, v, σ) = O(ω,M, s)

+

2X
j=1

[
σ

2
[y2
j −

1

σ
(σgj(M, s)− vj)]2 −

v2
j

2σ
] (33)

by using the method of completing the square, a technique
to derive the quadratic formula [42], and the function given
in (33) can be easily maximized when

y2
j =

1

σ
max(0, σgj(M, s)− vj), j = 1, 2. (34)

Plugging y2j given in Equation (34) back into the original
Formula (32), we have the desired augmented Lagrange
function

φ(ω,M, s, v, σ)

= O(ω,M, s)

+
1

2σ

2X
j=1

[[max(0, vj − σgj(M, s))]2 − v2
j]. (35)

Through this quadratic relaxation of the original problem
given in Equation (31), we can derive analytical form of
solutions to the profit maximization problem. We aim to
maximize the profit of the cloud service provider and obtain
the optimum solutions including service price ω, number of
servers M , and speed of servers s. Specifically, we seek to
solve the augmented Lagrange function given in Equation

(35) by first computing partial derivatives of Equation (31)
with respect to ω, M and s. Here, we omit details (e.g.,
simple partial derivative process) of the derivation but only
show key and difficult steps for solving the partial deriva-
tives of Equation (31) with respect to ω, M and s below.

Calculate the partial derivative of Equation (31) with
regard to ω: The partial derivative of Eω[m] with regard
to ω is ∂Eω [m]

∂ω = −αβtf(ω), thus, the partial derivative of
O(ω,M, s) with regard to ω is

∂O(ω,M, s)

∂ω
=
∂Eω [m]

∂ω
·ω + Eω [m] = αβt(1− ωf(ω)− F (ω)),

where f(ω) and F (ω) are the probability density and the
cumulative distribution function at ω, respectively.

Calculate the partial derivative of Equation (31) with
regard to M : The partial derivative of g1(M, s) with regard
to M can be expressed as

∂g1(M, s)

∂M
=

∂

∂M
[−
x1

M
(

1

[
√

2πM(1− ρ)(eρ/eρ)M + 1](1− ρ)
)]

+
x1

M2

PM

(1− ρ)2
. (36)

Let D1 =
√

2πM(1−ρ)(eρ/eρ)M+1 =
√

2πM(1−ρ)L+1,D2 = 1−ρ,
and L = (eρ/eρ)M , then Equation (36) becomes

∂g1(M, s)

∂M
=

∂

∂M
[−
x1

M
(

1

D1D2
)] +

x1

M2

PM

D2
2

. (37)

The partial derivative of L, D1, and D2 with regard to M
are calculated as follows:

∂L

∂M
= L(ρ− ln ρ− 1) + LM(1−

1

ρ
)
∂ρ

∂M
,

∂D1

∂M
=
√

2π(
1

2
√
M

(1− ρ)L+
√
M(−

∂ρ

∂M
)L+

√
M(1− ρ)

∂L

∂M
)

=
√

2π(
1

2
√
M

(1 + ρ)L−
√
M(1− ρ) ln ρL),

∂D2

∂M
= −

∂ρ

∂M
=

ρ

M
.

Substitute ∂L
∂M , ∂D1

∂M , and ∂D2

∂M back into the Equation (37),
we have

∂g1(M, s)

∂M
=

x1

MD1D2
[

∂D1
∂M

D2 + ∂D2
∂M

D1

D1D2
+

1

M
].

The partial derivative of g2(M, s) with regard to M can be
easily calculated as

∂g2(M, s)

∂M
= (ξsγ − Psta) · ρ+ Psta.

Caculate the partial derivative of Equation (31) with
regard to s: The partial derivative of L, D1, and D2 with
regard to s are calculated as follows:

∂L

∂s
= LM(1−

1

ρ
)
∂ρ

∂s
=
LM

s
(1− ρ),

∂D1

∂s
=
√

2πM [(−
∂ρ

∂s
L+ (1− ρ)

∂L

∂s
)] =

√
2πM [ρ+M(1− ρ)2]

L

s
,

∂D2

∂s
= −

∂ρ

∂s
=
ρ

s
.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

8

The partial derivatives of g1(M, s) and g2(M, s) with regard
to s are hence computed as

∂g1(M, s)

∂s
= −

x1

M
·
∂

∂s
(

PM

(1− ρ)2
) = −

x1

M
[

∂D1
∂s

D2 + ∂D2
∂s

D1

(D1D2)2
],

∂g2(M, s)

∂s
= Mρξγsγ−1.

Once we obtain the above partial derivatives of Equation
(31) with regard to ω, M and s, we can compute and obtain
the optimal solutions by letting these partial derivatives of
Equation (31) with regard to ω, M , and s equal 0.

4.2 Solve Augmented Lagrange Function

We present in this section an augmented Lagrange multi-
plier method based algorithm that solves the profit opti-
mization problem given in (32) and derives its optimum so-
lutions, including the service price and multiserver configu-
rations. The proposed algorithm first computes an optimum
Lagrange multiplier, which guarantees that the solution of
original objective function and the solution of Lagrange
function are consistent in the case where the optimal mul-
tiplier is obtained. Subsequently, the optimal service price
and multiserver configurations are determined.

Let M (k), s(k), and v(k) indicate the kth iteration of
M , s, and v in the algorithm. Let ε, η, and Ψ be three
positive numbers, l be the number of iterations, and L be
the maximum number of iterations. Algorithm 1 describes
the proposed augmented Lagrange algorithm. Inputs to the
algorithm are electricity price Cτ during time slot τ , the
rent δ, and user requests arrival rate λu. The algorithm
iteratively derives the optimal cloud service price ω and
multiserver configurations which includes the optimal num-
ber of servers M , the server speed s, and the Profit of the
cloud service provider.

The algorithm works as follows. It first formulates the
optimization problem into the form in Equation (25), then
sets parameters of ε, η, Ψ, and L, and initializes variables
of M (0), s(0), v1, and l (lines 1-3). In each round of itera-
tion, the algorithm calls the augmented Lagrange function
solver, denoted by ALF-Solver(φ(ω,M (l−1), s(l−1), v(l), σ)),
to obtain a local optimum of the ω, M , and s (line
5). The ALF-Solver(φ(ω,M (l−1), s(l−1), v(l), σ)) derives
the local optimum by computing partial derivatives of
φ(ω,M, s, v, σ) with regard to ω, M , and s, and solving a
system of equations of ω, M , and s (lines 18-21).

The algorithm exits if the Lagrange multiplier vector
v converges and approximates the optimum by an error
of ε. Let Qj(M (l), s(l)) = gj(M

(l), s(l)) − y2j for j = 1, 2
be the penalty item of the augmented Lagrange function
given in Equation (32), then the Lagrange multiplier vec-
tor v converges if ‖Q(M (l), s(l))‖ < ε holds (lines 6-10).
If it does not converge or converges too slowly, that is,
‖Q(M (l), s(l))‖/‖Q(M (l−1), s(l−1))‖ ≥ Ψ holds for a pos-
itive number Ψ, the penalty factor σ is updated to ησ for
η > 1 to speed up the convergence process (lines 11-13).
Accordingly, the Lagrange multiplier for the next iteration
is updated to vl+1

j = max(0, v
(l)
j −σgj(M (l), s(l)))(j = 1, 2)

(lines 14-15), and the procedure moves to the next iteration.

Algorithm 1: Iteratively solve the augmented Lagrange
function

Input:
Electricity price Cτ during sales period τ , rent δ, user
requests arrival rate λu;

Output:

The optimal service price ω, number of servers M , server
speed s, and Profit;

1 Formulate the optimization problem into the form in
Equation (25);

2 Set parameters α, β, γ, ε, η, Ψ, and L;
3 Initialize M (0), s(0), v(1), and l = 1;
4 while l < L do
5 [ω(l),M (l), s(l)] = ALF-Solver(φ(ω,M (l−1), s(l−1), v(l), σ));

// exit when {v(l)} converges;
6 if ‖Q(M (l), s(l))‖ < ε then
7 Calculate the Profit using the Equation (24);

// record the optimal solution;
8 Result[θsub] = [Profit, ω(l),M (l), s(l)];
9 break;

10 end
// otherwise, increase penalty factor

σ;
11 else if ‖Q(M (l), s(l))‖/‖Q(M (l−1), s(l−1))‖ ≥ Ψ then
12 σ = ησ;
13 end

// update the multiplier vector v;
14 vl+1

j = max(0, vlj − σgj(M (l), s(l)))(j = 1, 2);
15 l = l + 1;
16 end
17 return Result[θsub];

// solve the Lagrange function in (35);
18 ALF-Solver(φ(ω,M (l−1), s(l−1), v(l), σ))
19 Compute partial derivatives of φ w.r.t. ω,M , and s as
∂φ(ω,M (l−1), s(l−1), v(l), σ)/∂(ω,M, s);

20 Calculate ω, M , and s based on a system of equations of
∂φ
∂ω

, ∂φ
∂M

, and ∂φ
∂s

;
21 return [ω,M, s];

Once the algorithm converges, the optimum of ω, M ,
and s are derived, and the optimal Profit of the cloud ser-
vice provider can be calculated by using Equation (24) (line
7). Line 17 returns the optimal service price, multiserver
configurations, and Profit of the cloud service provider.

4.3 Design a Dynamic Closed Loop Control Scheme

The solution to the profit maximization problem described
above focuses on the interaction between users and the
cloud service provider. However, the impact of dynamic
cloud computing environment such as fluctuating electricity
bill and rental fees on profit maximization mechanism is not
investigated. On one hand, the variation of electricity bill
or rental fees has a direct impact on the expenditure of the
cloud service provider. On the other hand, the variation of
electricity bill or rental fees has an indirect influence on user
perceived value which affects the user demand of the cloud
service, and ultimately impacts the revenue of the cloud
service provider. Thus, it is necessary to design a scheme to
adjust service price and multiserver configurations accord-
ing to the dynamics of the cloud computing environment.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

9

In this subsection, we propose a closed loop control
scheme to dynamically update the optimal service price
and multiserver configurations. As illustrated in Figure 2,
the runtime control scheme monitors the dynamic cloud
computing environment. Once the electricity bill or rental
fees changes, the proposed control scheme first fits a new
probability distribution function of user perceived value
using kernel density estimation based on the historical price
data set Ω. Subsequently, it reconstructs and resolves the
profit maximization problem based on the new probability
distribution and the variation of electricity bill or rental fees.

The kernel density estimation technique adopted in the
proposed control scheme is a stochastic non-parametric way
to estimate the probability density function of a random
variable [26]. It is a fundamental data smoothing technique
where inferences about the population are made based on
a finite data sample. Given a univariate independent and
identically distributed sample drawn from some distribu-
tion with an unknown density function, the technique can
be used to estimate the shape of the density function.

Figure 2: Overview of closed loop control scheme

The details of the proposed runtime control scheme
are described in Algorithm 2. Inputs to the algorithm are
the historical price data set Ω and the output of system
monitor. The closed loop control scheme works as follows.
It monitors whether parameters of the cloud computing
environment change at all times (line 2). If no change,
the system will run with the current multiserver config-
urations (lines 3-5). Otherwise, it updates and solves the
profit maximization problem (lines 6-15). Lines 7-8 fit the
probability density function (pdf) of user perceived value
using MATLAB function ksdensity(∗) based on historical
price data set Ω. Line 9 updates the profit maximization
problem according to the change of the cloud computing
environment (i.e., electricity bill or rental fees). Line 10
solves the profit maximization problem using algorithm
1. The algorithm updates the optimal cloud service price
and multiserver configurations in line 11, and calculates
the profit of the cloud service provider using Equation (24)
in line 12. Finally, it inserts the service price ω into the
historical price data set Ω in line 13. Line 14 returns the
optimal cloud service price, multiserver configurations, and
Profit of the cloud service provider.

The MATLAB function ksdensity(∗) is used to fit the
probability density function of user perceived value based
on historical price data by using kernel smoothing density

estimation. Line 18 first calculates the number of samples
in the historical price data set Ω. The kernel bandwidth
h is a free parameter that exhibits a strong influence on
the resulting estimate [26]. Here, Gaussian basis functions
are used to approximate univariate data. Thus, the optimal
choice for kernel bandwidth h is calculated as line 19, which
minimizes the mean integrated squared error used in den-
sity estimation [43]. std(Ω) computes the standard deviation
of the samples in Ω. Line 20 uses operator @(x) to define the
function handle phi, which represents a normal probability
density function. exp(x) and sqrt(x) represent exponential
function and square root function, respectively. Based on
normal probability density function phi and bandwidth
h, line 21 computes the kernel density, that is probability
density function by defining the function handle ksden.
mean(x) is used to compute the average of the array. Line
22 returns the final fitted probability density function.

Algorithm 2: Dynamic closed loop control scheme
Input:
The historical price data set Ω, the output of system
monitor;

Output:

The optimal service price ω, number of servers M , server
speed s, and Profit;

1 while true do
2 Monitor if parameters of computing environment

change;
3 if no change then
4 continue;
5 end
6 else
7 Ω = historical price data set;

// fit pdf using ksdensity(Ω);
8 fX(ω)← ksdensity(Ω);
9 Update profit maximization problem given in (25);

10 Solve profit maximization problem using Algo-
rithm 1;

11 Update the optimal service price ω, number of
servers M , and server speed s;

12 Calculate the Profit using Equation (24);
13 Insert service price ω into historical price data set

Ω;
14 return [ω,M, s, Profit];
15 end
16 end

// fit pdf of user perceived value using
MATLAB function ksdensity(Ω);

17 ksdensity(Ω)
// derive the number of samples in Ω;

18 n = length(Ω);
// set the optimal bandwidth h;

19 h = std(Ω) ∗ (4/3/n)ˆ(1/5);
// obtain the normal pdf;

20 phi = @(x)(exp(−.5 ∗ x.ˆ2)/sqrt(2 ∗ pi));
// compute kernel density with phi and h;

21 ksden = @(x)mean(phi((x− Ω)/h)/h);
22 return ksden;

5 SIMULATION-BASED EVALUATION

Extensive simulation experiments have been conducted
to validate the effectiveness of the proposed scheme. We

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

10

first describe simulation settings in detail, then verify the
effectiveness of the proposed user perceived value-based
dynamic pricing model, followed by the validation of the
optimal pricing and multiserver configurations and a com-
parison study with benchmarking schemes in terms of the
profit of the cloud service provider.

5.1 Simulation Settings

The simulation experiments are conducted on a machine
equipped with 2.56GHz Intel i7 quad-core processor and
8GB DDR4 memory, and running a Windows version of
Matlab x64. For the sake of a fair comparison, three types
of users used in [35] are also adopted in our simulation
experiments. Users of type 1 are delay-sensitive while users
of type 2 and 3 are delay-insensitive to the deferment of
the service requests. Data of type 1 were extracted from
Youtube U.S. traffic from January 1, 2014 to January 31, 2014
[44]. Data of type 2 and 3 were extracted from GMaps and
GMail U.S. traffic from January 1, 2014 to January 31, 2014
[44], respectively. The one day ahead real-time pricing data
released by Ameren Illinois Power Corporation at January
2014 are taken as the price input in the experiment [45].
We also assume that user perceived value X obeys the
following normal distribution, X ∼ N(0, 0.22) [7], [22].
In addition, the value of other parameters used in our
simulation experiment are shown in Table 1.

Table 1: Experimental parameters table

Parameter Definition Value

T sales period 30 d
τ time slot 1 h
N number of time slot 720
Dmax maximum value of service deferment 24
ψ1 sensitivity factor of users of type 1 ∞
ψ2 sensitivity factor of users of type 2 0.1
ψ3 sensitivity factor of users of type 3 0.11

5.2 Verify User Perceived Value-Based Dynamic Pric-
ing Model

This subsection verifies the proposed user perceived value-
based dynamic pricing model from the perspective of sup-
ply and demand law.

5.2.1 Revenue Vs. Service Requirement

We first analyze the relationship between the service re-
quirement in terms of the number of instructions, which
is denoted by r, and the revenue of the cloud service
provider. In addition to the parameters given in Table 1,
we set the average service requirement denoted by r to 1
billion instructions. The number of servers M is initialized
to 7, the base speed s0 and speed s of servers are both
initialized to 1 billion instructions per second, and the static
power consumption Psta is set to 2W. The parameters of
dynamic power consumption are assumed to be γ = 2.0
and ξ = 9.4192, and parameters of Gamma distribution are
assumed to be α = 2.0 and β = 1.5 [6].

Figure 3(a) shows the relationship between service re-
quirements and the revenue of the cloud service provider
when service request arrival rate λu is 16.15, 16.35, 16.55,
16.75, and 16.95 billions instructions per second, respec-
tively. It can be seen from Figure 3(a) that the revenue
increases as service requirements increase. This indicates
that the usage of cloud services and the revenue obtained
are positively correlated under the user perceived value-
based pricing model. In addition, as shown in the figure,
the revenue decreases as λu increases. This is because with
the increase of λu, servers can not process service requests
in time, leading to a higher response time and lower quality
of service. Low quality of service will result in a smaller
number of users to purchase the cloud services, thus, the
revenue of the cloud service provider decreases accordingly.

Figure 3(b) shows the relationship between service re-
quirements and the normalized service price when service
request arrival rate λu is 16.15, 16.35, 16.55, 16.75, and
16.95 billions instructions per second, respectively. From the
figure, we can see that when service requirement r < 1.4
billions, the normalized price fluctuates with the increase of
the service requirement. When service requirement 1.4 <
r < 2.6 billions, the normalized price increases with the in-
crease of the service requirement. When service requirement
r > 2.6 billions, the normalized price eventually converges
to a stable value with the increase of the service requirement.

(a) Revenue vs. service require-
ment.

(b) Normalized price vs. service re-
quirement.

Figure 3: Relationship between service requirement and
revenue/normalized price.

5.2.2 Purchase Amount and Revenue Vs. Service Price
Figure 4(a)-4(d) demonstrate that how the relationship
among the cloud service purchase amount, revenue, and the
price of cloud service changes when service request arrival
rate λu is 16.15, 16.55, 16.75, and 16.95 billions instructions
per second, respectively. As we can see from these figures,
before the service price reaches user perceived value of the
service, the purchase amount of the cloud service increases
with the increases of the price. Once the price exceeds
user perceived value of the service, the purchase amount
declines sharply. This observation is consistent with real
market situation, that is, users are willing to accept a price
and purchase when the price is lower than their perceived
value. However, the user’s purchase intention will decline
sharply when the price is beyond user perceived value.

It also can be seen from Figure 4(a) to 4(d) that the point
where purchase amount is maximum is not necessarily the
point where the revenue is maximum. That is, the revenue

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

11

(a) λu = 16.15. (b) λu = 16.55. (c) λu = 16.75. (d) λu = 16.95.

Figure 4: Purchase amount and revenue vs. service price.

for the scenario of the low price and high purchase amount
is not necessarily higher than the revenue for the scenario
of the high price and low purchase amount. When service
request arrival rate λu = 16.55, the cloud service provider
can get the maximum revenue.

5.2.3 Purchase Amount and Revenue Vs. Service request
arrival rate
Figure 5(a) and 5(b) demonstrate that how the cloud ser-
vice purchase amount and revenue change when service
request arrival rate λu is 16.15, 16.35, 16.55, 16.75, and 16.95
billions instructions per second, respectively. From Figure
5(a), we can see that the optimal prices for the maximum
service purchase are different under diverse service request
arrival rate λu. For the case where λu = 16.55 billions
instructions per second, the service purchase amount and
the service price ω reach the maximum value at the same
time when compared to cases of different service request
arrival rates. Meanwhile, the maximum purchase amount
at λu = 16.35 is approximately the same as the maximum
purchase amount at λu = 16.75. This situation holds for the
case where λu = 16.15 and λu = 16.95. This is because
with the increase of λu, limited number of servers can not
process arrived service requests in time, leading to a higher
response time, lower quality of service, and thus a lower
maximum purchase amount of cloud services.

(a) Purchase amount vs. service
request arrival rate.

(b) Revenue vs. service request ar-
rival rate.

Figure 5: Purchase amount and revenue vs. service request
arrival rate.

The revenue in Figure 5(b) is obtained by multiplying
the purchase amount and service price in Figure 5(a). Figure
5(b) shows that the optimal prices for the maximum revenue
are different under various service request arrival rate λu.

From this figure, we observe that with the increase of λu, the
maximum revenue at different λu increases first and then
decreases. The cloud service provider obtains the maximum
revenue when λu = 16.55 billions instructions per second.
Similarly, this is because with the increase of λu, limited
number of servers can not process arrived service requests
in time, leading to a lower maximum purchase amount
of cloud services, and thus a lower revenue. Based on the
above experimental results, our user perceived value-based
dynamic pricing model follows the supply and demand law
in market.

5.3 Validate Multiserver Configurations for Profit Maxi-
mization
We set the response time constraint for user requests, de-
noted by b1, to 0.33 seconds and the power consumption of
the server system, denoted by b2, to 106W. The rental cost
denoted by δ is set to 1.5 cents per second [7].

Figure 6(a) shows the relationship between profit and
the number of working servers. It can be seen from the
figure that when service request arrival rate λu = 12.9,
13.9, 14.9, 15.9, and 16.9 billions instructions per second,
the optimal number of servers denoted by M is 16, 17,
19, 18, and 17, respectively. It is clear that when M is
small, the utilization of working servers is approaching 1,
leading to a long response time for user requests and low
quality of service accordingly, and in turn a low profit under
the user perceived value-based dynamic pricing model. As
M increases, the number of user requests in the waiting
queue decreases quickly, the user requests do not have to
wait too long, and thus the profit increases under the user
perceived value-based dynamic pricing model. However,
as M continues increasing, the profit does not increase.
This is because the increase in the number of servers leads
to an increase in the maintenance cost of working servers
including electricity and rental cost.

Figure 6(b) shows the relationship between profit and
the server speed s. We notice from the figure that in order
to maximize the profit, the optimal speed s is set to 0.7642,
0.9435, 1.1044, 1.1293, and 1.2838 billions instructions per
second when the service request arrival rate λu = 12.9,
13.9, 14.9, 15.9, and 16.9 billions instructions per second,
respectively. It is clear that when the server speed s is low,
the utilization of working servers is approaching 1, leading
to a long response time for user requests and low quality of
service accordingly, and in turn a low profit under the user

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

12

(a) Profit vs. number of severs (M). (b) Profit vs. server speed (s). (c) Rental vs. electricity. (d) Optimal server configurations.

Figure 6: Validate server configurations for profit maximization.

perceived value-based dynamic pricing model. When the
server speed s is high, service requests are more likely to be
executed on time, leading to an increase in the profit under
the user perceived value-based dynamic pricing model.
However, with the continued increase in s, the profit does
not increase as expected. This is because the increase in the
server speed leads to an increase in the cost of operating a
multiserver system.

From Figure 6(a) and 6(b), we see that the profit reaches
its maximum when λu is 16.9 billions instructions per sec-
ond and the number and speed of servers take the appro-
priate value. In addition, we observe such a phenomenon
that the profit in Figure 6(a) drops faster than in Figure
6(b) after reaching the maximum value. From Section 2, we
know that the number of servers M affects both rental fees
and electricity bill while the server speed s only impacts
electricity bill. Figure 6(c) studies the impact of rental fees
and electricity bill on profit under the same experimental
conditions. We can see from the figure that the rental fees
have a greater impact on profit compared to electricity
bill. Thus, with the increase of M , the profit in Figure
6(a) decreases faster due to the great impact of rental fees.
Meanwhile, with the increase of s, the profit in Figure 6(b)
decreases slower due to the weak impact of electricity bill.

Figure 6(d) gives the optimal M and s of servers that
maximize the profit when λu = 16.9 billions instructions per
second. It can be seen that the maximal profit is obtained
when s and M is set to 1.4351 billions instructions per
second and 17, respectively. That is to say, 687.9 cents of
profit is obtained when 17 servers are open and each server
runs at 1.4351 billions instructions per second.

5.4 Compare the Maximal Profit with Benchmarking
Pricing Strategies

We compare the proposed user perceived value-based profit
maximization scheme with two benchmarking methods
OMCPM [6] and UPMR [35]. OMCPM [6] is an efficient
pricing model that takes such factors into considerations
as the service-level agreement and customer satisfaction. It
derives an optimal server configuration and service price
for profit maximization. UPMR [35] is a usage based pricing
model used by today’s major cloud service providers. The
UPMR model rewards users proportionally based on the
time length that users set as deadlines for completing their
service requests. Compared with OMCPM and UPMR, our

0

10

20

30

40

50

60

70

80

0.93 1.45 1.63 1.96 2.12

N
or

m
al

iz
ed

 p
ro

fit

Speed (billion instructions/second)

OMCPM UPMR Proposed

(a) λu=16.9, M=17.

0

10

20

30

40

50

60

70

0.93 1.45 1.63 1.96 2.12

N
or

m
al

iz
ed

 p
ro

fit

Speed (billion instructions/second)

OMCPM UPMR Proposed

(b) λu=12.55, M=18.

Figure 7: Compare the maximal profit with two benchmark-
ing pricing models.

pricing method is based on user perceived value that reflects
users willingness to purchase cloud services.

We compare the maximal profit generated by proposed
pricing model with that generated by the two benchmarking
pricing models under the same experimental settings. Two
comparison experiments are conducted. In the first exper-
iment, user service request arrival rate λu is set to 16.9
billions instructions per second and the number of working
servers M is set to 17. In the second experiment, λu is
set to 12.55 billions instructions per second and M is set
to 18. It is clear from Figure 7 that our proposed dynamic
pricing model is superior to the two benchmarking models.
For instance, the proposed pricing model can obtain up
to 21.55 cents per second more (31.32%) as compared to
OMCPM method, and 15.66 cents per second more (22.76%)
as compared to UPMR when λu = 16.9 billions instructions
per second, M = 17, and s = 0.93 billion instructions per
second. Thus, the pricing strategy based on user perceived
value can better reflect the market demand and the cloud
service provider can obtain higher profit.

We further verify how the expected number of actual
buyers (Eω(m)) and the corresponding revenue change
when user perceived value obeys normal distributions with
different parameters. Figure 8(a)-8(f) show the expected
number of actual buyers (Eω(m)) under different expec-
tations µ and variances σ2 of user perceived value in our
proposed dynamic pricing model. From Figure 8(a)-8(c), we
can see that under different expectations µ, as µ increases,
the cloud service provider needs to increase the service
price ω to obtain the same amount of purchases. From
Figure 8(d)-8(f), we can see that under different variances
σ2, when service price ω is less than µ, as σ2 increases,
the cloud service provider needs to decrease the service

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

13

(a) X ∼ N(0, 1). (b) X ∼ N(10, 1). (c) X ∼ N(30, 1).

(d) X ∼ N(10, 0.01). (e) X ∼ N(10, 0.5). (f) X ∼ N(10, 1.0).

Figure 8: Verify the change in the expected number of actual buyers when user perceived value obeys normal distributions
with different parameters (i.e., µ and σ2).

price ω to obtain the same amount of purchases. However,
when service price ω is greater than µ, as σ2 increases, the
cloud service provider needs to increase the service price
ω to obtain the same amount of purchases. This is because
the larger the σ2, the more dispersed the perceived value’s
distribution. Thus, in the case of the same service price ω,
the purchase amount changes accordingly.

Figure 9(a)-9(f) show the revenue under different ex-
pectations µ and variances σ2 of user perceived value in
our proposed dynamic pricing model. From Figure 9(a)-
9(c), we can find that under the same purchase amount,
the cloud service provider needs to increase expectation
µ of normal distribution, that is, users’ perceived value
of services, to achieve higher revenue. From Figure 9(d)-
9(f), we can see that under the same purchase amount, the
cloud service provider needs to decrease variance σ2 of
normal distribution to achieve higher revenue. In general,
to obtain the higher revenue, the cloud service provider
needs to carry out market strategies to improve perceived
value of service in users’ mind. This is because under the
same purchase amount, that is, under the same number of
requests that the cloud service provider needs to process, the
corresponding expenses are the same. Thus, it is reasonable
to grow the profit of the cloud service provider by increasing
the revenue.

6 CONCLUSION

In this paper, we first propose a user perceived value-based
dynamic profit maximization mechanism that takes into
account the interaction between cloud users and the cloud
service provider. Subsequently, we use augmented Lagrange
multiplier method to solve the optimization problem to

derive the optimal solution, including the service price,
number of servers, and speed of servers. Finally, we propose
a dynamic closed loop control scheme to update the service
price and multiserver configurations using kernel density
estimation method. Extensive experimental results show
that our proposed profit maximization scheme follows the
supply and demand law in market, and are able to obtain
more profit of up to 31.32% and 22.76% as compared to
the state of the art benchmarking methods OMCPM [6] and
UPMR [35], respectively.

REFERENCES

[1] K. Hwang, J. Dongarra, and G. Fox, Distributed and cloud comput-
ing, Morgan Kaufmann, 2012.

[2] L. Wang, H. Zhong, R. Ranjan, A. Zomaya, and P. Liu, Estimating
the statistical characteristics of remote sensing big data in the
wavelet transform domain, IEEE Transactions on Emerging Topics in
Computing, vol. 2, no. 3, pp. 324-337, 2014.

[3] P. Mell and T. Grance, The NIST definition of cloud computing,
Communications of the ACM, vol. 15, 2011.

[4] L. Wang, Y. Ma, A. Zomaya, R. Ranjan, and D. Chen, A parallel
file system with application-aware data layout policies for massive
remote sensing image processing in digital earth, IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no.6, pp. 1497-1508, 2015.

[5] P. Cong, L. Li, G. Shao, J. Zhou, M. Chen, K. Huang, and T. Wei,
User perceived value-aware cloud pricing for profit maximization
of multiserver systems, IEEE International Conference on Parallel and
Distributed Systems, pp. 537-544, 2017.

[6] J. Cao, K. Hwang, K. Li, and A. Zomaya, Optimal multiserver
configuration for profit maximization in cloud computing, IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp.
1087-1096, 2013.

[7] Y. Chun, Optimal pricing and ordering policies for perishable
commodities, European Journal of Operational Research, pp. 68-82,
2003.

[8] C. Li, Cloud computing system management under flat rate pricing,
Journal of network and systems management, vol. 19, no. 3, pp. 305-318,
2011.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

14

(a) X ∼ N(0, 1). (b) X ∼ N(10, 1). (c) X ∼ N(30, 1).

(d) X ∼ N(10, 0.01). (e) X ∼ N(10, 0.5). (f) X ∼ N(10, 1.0).

Figure 9: Verify the change in the revenue when user perceived value obeys normal distributions with different parameters
(i.e., µ and σ2).

[9] G. Kesidis, A. Das, and G. Veciana, On flat-rate and usage-based
pricing for tiered commodity internet services, Annual Conference
on Information Sciences and Systems, pp. 304-308, 2008.

[10] Y. Lee, C. Wang, A. Zomaya, and B. Zhou, Profit-driven scheduling
for cloud services with data access awareness, Journal of Parallel and
Distributed Computing, vol. 72, no. 4, pp. 591-602, 2012.

[11] M. Macias and J. Guitart, A genetic model for pricing in cloud
computing markets, ACM Symposium on Applied Computing, pp.
113-118, 2011.

[12] Amazon EC2. [Online]. Available: http://aws.amazon.com.
[13] Amazon EC2 spot instances. [Online]. Available:

https://aws.amazon.com/cn/ec2/spot/pricing.
[14] H. Xu and B. Li, Dynamic cloud pricing for revenue maximization,

IEEE Transactions on Cloud Computing, vol. 1, no. 2. pp. 158-171, 2013.
[15] J. Zhao, H. Li, C. Wu, Z. Li, Z. Zhang, and F. Lau, Dynamic pricing

and profit maximization for the cloud with geo-distributed data
centers, IEEE Conference on Computer Communications, 2014.

[16] Service-level agreement. [Online]. Available:
https://en.wikipedia.org/wiki/Service-level agreement.

[17] M. Ghamkhari and H. Mohsenian-Rad, Energy and performance
management of green data centers: A profit maximization ap-
proach, IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 1017-1025,
2013.

[18] Y. Lee, C. Wang, A. Zomaya, and B. Zhou, Profit-driven service
request scheduling in clouds, International Conference on Cluster,
Cloud and Grid Computing, pp. 15-24, 2010.

[19] D. Irwin, L. Grit, and J. Chase, Balancing risk and reward in a
market- based task service, International Conference on high perfor-
mance distributed computing, pp. 160-169, 2004.

[20] L. Wang, Y. Ma, J. Yan, V. Chang, A. Zomaya, pipsCloud: High
performance cloud computing for remote sensing big data man-
agement and processing, Future Generation Computer Systems, pp.
353-368, 2018.

[21] M. Leppaniemi, H. Karjaluoto, and H. Saarijarvi, Customer per-
ceived value, satisfaction, and loyalty: the role of willingness to
share information, The International Review of Retail, Distribution and
Consumer Research, vol. 27, no. 2, pp. 164-188, 2017.

[22] Z. Yang and R. Peterson, Customer perceived value, satisfaction
and loyalty: The role of switching costs, Psychology & Marketing,
vol. 21 no. 10, pp. 799-822, 2004.

[23] S. Karlin and C. Carr, Prices and optimal inventory policy, Arrow
Karlin & Scarf Studies in Applied Probability & Management Science,
pp. 159-172, 1962.

[24] J. Roig, J. Garcia, M. Tena, and J. Monzonis, Customer perceived
value in banking services, International Journal of Bank Marketing,
vol. 24, no. 5, pp. 266-283, 2006.

[25] Definition of Perceived Value. [Online]. Available:
http://smallbusiness.chron.com/definition-perceived-value-
23017.html.

[26] Kernel density estimation. [Online]. Available:
https://en.wikipedia.org/wiki/Kernel density estimation.

[27] G. Gallego and G. Ryzin, Optimal dynamic pricing of inventories
with stochastic demand over finite horizons, Management Science,
vol. 40, no. 8, pp. 999-1020, 1994.

[28] P. Pfeiffer. Probability for applications, Springer, 2012.
[29] K. Li, Optimal load distribution for multiple heterogeneous blade

servers in a cloud computing environment, Journal of Grid Comput-
ing, pp. 943-952, 2011.

[30] B. Chun and D. Culler, User-centric performance analysis of
market-based cluster batch schedulers, International Symposium on
CLUSTER Computing and the Grid, 2002.

[31] K. Li, Optimal configuration of a multicore server processor for
managing the power and performance tradeoff, Journal of Super-
computing, vol. 61, no. 1, pp. 189-214, 2012.

[32] L. Kleinrock, Queueing systems, Volume 1: Theory, Wiley , 1975.
[33] J. Zhou, J. Chen, K. Cao, T. Wei, and M. Chen, Game theoretic

energy allocation for renewable powered in-situ server systems,
IEEE International Conference on Parallel and Distributed Systems, pp.
721-728, 2016.

[34] J. Little and S. Graves, Little’s law, International Series in Operations
Research and Management Science, pp. 81-100, 2008.

[35] Y. Zhan, M. Ghamkhari, D. Xu, S. Ren, and H. Mohsenian-Rad,
Extending demand response to tenants in cloud data centers via
non-intrusive workload flexibility pricing, IEEE Transactions on
Smart Grid, pp. 1-8, 2016.

[36] Steepest descent method - wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Method of steepest descent.

[37] Newton’s method - wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Newton%27s method.

[38] D. Bertsekas, Multiplier methods: A survey, Automatica, vol. 12,
pp. 133-145, 1976.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2843343, IEEE
Transactions on Parallel and Distributed Systems

15

[39] W. Long, X. Liang, S. Cai, J. Jiao, and W. Zhang, A modified
augmented Lagrangian with improved grey wolf optimization to
constrained optimization problems, Neural Computing & Applica-
tions, pp. 1-18, 2016.

[40] Y. Zheng and Z. Meng, A new augmented Lagrangian objective
penalty function for constrained optimization problems, Open Jour-
nal of Optimization, vol. 6, pp. 39-46, 2017.

[41] B. Dandurandet, N. Boland, J. Christiansen, A. Eberhard, and F.
Oliveira, A parallelizable augmented Lagrangian method applied
to large-scale non-convex-constrained optimization problems, 2017.

[42] Completing the square-wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Completing the square.

[43] Mean integrated squared error. [Online]. Available:
https://en.wikipedia.org/wiki/Mean integrated squared error.

[44] Browse real-time traffic to google products and services.
[Online]. Available:
http://www.google.com/transparencyreport/traffic/explorer.

[45] Real time prices-ameren. [Online]. Available:
https://www.ameren.com/RetailEnergy/RealTimePrices.

Peijin Cong received her B.S. degree from the
Department of Computer Science and Technol-
ogy, East China Normal University, Shanghai,
China, in 2016. She is currently pursuing the
master degree with the Department of Com-
puter Science and Technology, East China Nor-
mal University, Shanghai, China. Her current re-
search interest is in the areas of power manage-
ment in mobile devices and edge computing.

Liying Li received her B.S. degree from the De-
partment of Computer Science and Technology,
East China Normal University, Shanghai, China,
in 2017. She is currently pursuing the master de-
gree with the Department of Computer Science
and Technology, East China Normal University,
Shanghai, China. Her current research interests
are in the areas of cyber physical systems and
IoT resource management.

Junlong Zhou received his Ph.D. degree in
Computer Science from East China Normal Uni-
versity, Shanghai, China, in 2017. He was a Re-
search Visitor with the University of Notre Dame,
Notre Dame, IN, USA, during 2014-2015. He is
currently an Assistant Professor with the School
of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing,
China. His research interests include real-time
embedded systems, cyber physical systems,
and cloud computing. Dr. Zhou has been an

Associate Editor for the Journal of Circuits, Systems, and Computers
since 2017. He is a member of the IEEE.

Kun Cao is currently pursuing his Ph.D. de-
gree with the Department of Computer Science
and Technology, East China Normal University,
Shanghai, China. His current research interests
are in the areas of high performance computing,
multiprocessor systems-on-chip and cyber phys-
ical systems.

Tongquan Wei received his Ph.D. degree in
Electrical Engineering from Michigan Technolog-
ical University in 2009. He is currently an Asso-
ciate Professor in the Department of Computer
Science and Technology at the East China Nor-
mal University. His research interests are in the
areas of Internet of Things, real-time embedded
systems, green and reliable computing, parallel
and distributed systems, and cloud computing.
He serves as a Regional Editor for Journal of
Circuits, Systems, and Computers since 2012.

He is a member of the IEEE.

Mingsong Chen (S’08–M’11) received the B.S.
and M.E. degrees from Department of Computer
Science and Technology, Nanjing University,
Nanjing, China, in 2003 and 2006 respectively,
and the Ph.D. degree in Computer Engineering
from the University of Florida, Gainesville, in
2010. He is currently a full Professor with the De-
partment of Embedded Software and Systems
of East China Normal University. His research
interests are in the area of design automation of
cyber-physical systems, formal verification tech-

niques and mobile cloud computing. He is a member of the IEEE.

Shiyan Hu received his Ph.D. in Computer En-
gineering from Texas A&M University in 2008.
He is an Associate Professor at Michigan Tech,
and he was a Visiting Associate Professor at
Stanford University from 2015 to 2016. His re-
search interests include Cyber-Physical Sys-
tems (CPS), CPS Security, Data Analytics, and
Computer-Aided Design of VLSI Circuits, where
he has published more than 100 refereed pa-
pers. He is an ACM Distinguished Speaker, an
IEEE Systems Council Distinguished Lecturer,

an IEEE Computer Society Distinguished Visitor, and a recipient of
National Science Foundation (NSF) CAREER Award. Prof. Hu is the
Chair for IEEE Technical Committee on Cyber-Physical Systems. He is
the Editor-In-Chief of IET Cyber-Physical Systems: Theory & Applica-
tions. He is an Associate Editor for IEEE Transactions on Computer-
Aided Design, IEEE Transactions on Industrial Informatics, and IEEE
Transactions on Circuits and Systems. He is also a Guest Editor for
a number of IEEE/ACM Journals such as Proceedings of the IEEE
and IEEE Transactions on Computers. He has held chair positions in
numerous IEEE/ACM conferences. He is a Fellow of IET.

